版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1VaR概述1.1VaR的基本概念VaR的英文全称是ValueatRisk,即“处于风险中的价值”,是指市场正常波动下,某一金融资产或证券组合的最大可能损失。更为确切地说法是,在一定的概率水平下(置信度),某一金融资产或证券组合在未来特定的一段时间内的最大可能损失。在数学上可表示为:Prob(△P>VaR)=1一a其中,△P为资产组合在持有期△t内的损失;VaR为置信水平a下处于风险中的价值。注意,本文中VaR以及收益或损失的取值均取正数形式(事实上取正负都无关紧要,只需做一个变换即可),这里取正数只是为了与日常习惯一致。1目前一页\总数六十二页\编于七点假定公司1994年置信度95%的日VaR值为960万美元,根据VaR的定义,其含义是指,该公司可以以95%的可能性保证,1994年每一特定时点上的证券组合在未来24小时内,由于市场价格变动而带来的损失不会超过960万美元。VaR主要基于资产组合价值变化的统计分布图(直方图),如果给出某一资产组合价值变化的统计分布图,根据VaR的定义就可直观地找到与置信度相对应的分位数,即VaR值。2目前二页\总数六十二页\编于七点VaR作为一个统计概念,本身不过是个数字,它衡量的是在一定的时期和正常的市场条件下,一个机构投资者可能遭受的最大损失。与其他的风险测量技术不同的是,它试图对投资组合的价值变化提供一种比较清晰的概率描述。VaR可以回答这样的问题:在某一段时间内,在X%(如99%或95%)的把握下,投资者至多会损失多少。它的计算需要考虑三个基本因素:①时间长度(即持有期):如天数或周数②置信度(即把握程度)③损益的概率分布。3目前三页\总数六十二页\编于七点1.2VaR参数的选择在VaR的定义中,有两个重要参数—持有期和置信水平。任何VaR只有在给定这两个参数的情况下才有意义。下面分析影响这两个参数确定的重要因素。(l)持有期的选择持有期是计算VaR的时间范围。由于波动性与时间长度呈正相关,所以VaR随持有期的增加而增加。通常的持有期是一天或一个月,但某些金融机构也选取更长的持有期,如一个季度或一年。在1997年底生效的巴塞尔委员会的资本充足性条款中,持有期为两个星期(10个交易日)。一般来讲,金融机构使用的最短持有期是一天,但理论上可以使用小于一天的持有期。4目前四页\总数六十二页\编于七点选择持有期时,往往需要考虑四种因素:流动性、正态性、头寸调整、数据约束。l)流动性。影响持有期选择的第一个因素是金融机构所处的金融市场的流动性。在不考虑其他因素的情况下,理想的持有期选择是由市场流动性决定的。如果交易头寸可以快速流动,则可以选择较短的持有期;但如果流动性较差,例如寻找交易对手的时间较长,则选择较长的持有期更加合适。实际中,金融机构大多在多个市场上持有头寸,而在不同市场上达成交易的时间差别很大,这样,金融机构很难选择一个能最好地反映交易时间的持有期。因此,金融机构通常根据其组合中比重最大的头寸的流动性选择持有期。5目前五页\总数六十二页\编于七点2)正态性。在计算VaR时,往往假定回报的正态分布性。金融经济学的实证研究表明,时间跨度越短,实际回报分布越接近正态分布。因此,选择较短的持有期更适用于正态分布的假设。3)头寸调整。在实际金融交易中,投资管理者会根据市场状况不断调整其头寸或组合。持有期越长,投资管理者改变组合中头寸的可能性越大。而在VaR计算中,往往假定在持有期下组合的头寸是不变的。因此,持有期越短就越容易满足组合保持不变的假定。6目前六页\总数六十二页\编于七点3)头寸调整。在实际金融交易中,投资管理者会根据市场状况不断调整其头寸或组合。持有期越长,投资管理者改变组合中头寸的可能性越大。而在VaR计算中,往往假定在持有期下组合的头寸是不变的。因此,持有期越短就越容易满足组合保持不变的假定。4)数据约束。VaR的计算往往需要大量的历史样本数据,持有期越长,所需的历史时间跨度越长。例如,假定计算VaR所需的数据为1000个观测值,如果选择持有期为一天,则需要至少4年的样本数据(每年250个交易日);而如果选择持有期为一周(或一个月),则历史样本采用的是周(或月)数据,需要20年(或80年)的数据才能满足基本要求。这样长时间的数据不仅在实际中无法得到,而且时间过早的数据也没有意义。因此,VaR计算的数据样本量要求表明,持有期越短,得到大量样本数据的可能性越大。7目前七页\总数六十二页\编于七点(2)置信水平的选择置信水平的选择依赖于对VaR验证的需要、内部风险资本的需要、监管要求以及在不同机构之间进行比较的需要。同时,正态分布或其他一些具有较好分布特征的分布形式(如t分布)也会影响置信水平的选择。1)有效性验证。如果非常关心VaR实际计算结果的有效性,则置信度不应选得过高。置信度越高,则实际中损失超过VaR的可能性越少。这种额外损失的数目越少,为了验证预测结果所需的数据越多。因此,实际中无法获取大量数据的约束,限制了较高置信水平的选择。8目前八页\总数六十二页\编于七点2)风险资本需求。当考虑内部资本需求时,置信水平选择依赖于金融机构对极值事件风险的厌恶程度。风险厌恶程度越高,则越需准备更加充足的风险资本来补偿额外损失。因此,用VaR模型确定内部风险资本时,安全性追求越高,置信水平选择也越高。置信水平反映了金融机构维持机构安全性的愿望与抵消设置风险资本对银行利润不利影响之间的均衡。3)监管要求。金融监管当局为保持金融系统的稳定性,会要求金融机构设置较高的置信水平。如巴塞尔委员会1997年底生效的资本充足性条款中要求的置信度为99%o9目前九页\总数六十二页\编于七点4)统计和比较的需要。不同的机构使用不同的置信水平报告其VaR数值。如果存在标准的变换方法,将不同置信度下的VaR转换成同一置信水平下的vaR进行比较,则置信水平的选择就无关紧要了。因此,在正态分布假定下可以选择任意水平的置信度,不会影响不同金融机构间的比较。不同置信水平适用于不同的目的:当考虑VaR的有效性时,需要选择较低的置信水平;而内部风险资本需求和外部监管要求则需要选择较高的置信水平;此外,对于统计和比较的目的需要选择中等或较高的置信水平。10目前十页\总数六十二页\编于七点
2vaR计算的基本原理
2.1VaR的基本计算原理a一般分布下的VaR计算考虑一个资产组合,假定为资产组合的初始价值,R是持有期内的投资回报率,则在持有期末,资产组合的价值可以表示为p=p0(1+R)。假定回报率R的期望回报和波动性分别为μ和σ。如果在某一置信水平a下,资产组合的最低价值为p*=p0(1+R*),则根据VaR的定义—在一定的置信水平下,资产组合在未来特定的一段时间内的最大可能损失,可以定义相对于资产组合价值均值(期望回报)的VaR,即相对VaR为:
(相对)
11目前十一页\总数六十二页\编于七点如果不以资产组合价值的均值(期望回报)为基础,可以定义绝对VaR为:根据以上定义,计算VaR就相当于计算最小值P*或最低的回报率R*。考虑资产组合未来日回报行为的随机过程,假定其未来回报的概率密度函数为,则对于某置信水平c下的资产组合最低值P*,有或无论分布是离散的还是连续的,肥尾还是瘦尾,这种表示对于任何分布都是有效的目前十二页\总数六十二页\编于七点b.正态分布下的VaR计算如果假定分布是正态分布形式,则可以简化VaR的计算。在正态分布条件下,可以根据置信水平选择一个对应的乘子,用组合的标准差与该乘子相乘,就可求得VaR。这种方法是基于对参数标准差的估计,而不是从经验分布上确定百分位数,因此称这种方法为参数方法。首先,把一般分布变换成标准正态分布。其中的均值是0,标准差为1,用最低回报表示的组合价值的最小值为
。一般而言R*负的,也可以表示为-▕R▏。把R*和标准正态分布的偏离>0联系起来,即:等价于:13目前十三页\总数六十二页\编于七点因此VaR的计算问题就等价于寻找一个偏离,使得上式成立,引入累计标准分布函数,累计密度函数N(d),它是从0(d→﹣∞)到1(d→+∞)的单调增函数。d为标准正态变量,当d为0时函数值为0.5。在标准正态分布下,当给定一个置信水平如95%,则对应的
=1.65,于是就可以计算出相应的最小回报R*和VaR。最小回报可以表示为14目前十四页\总数六十二页\编于七点假定参数群和。是一天的时间间隔上计算出来的,则时间间隔为△t的相对VaR为:因此,VaR是分布的标准差与由置信水平确定的乘子的乘积。类似地,对于绝对VaR有如下形式这种方法可以推广到正态分布和其他的累计概率密度函数,其中所有的不确定性都体现在上,其他的分布会得到不同的值。15目前十五页\总数六十二页\编于七点2.2VaR计算的基本思想上述分析表明,VaR计算的核心在于估计资产组合未来损益的统计分布或概率密度函数。大多数情况下,直接估算资产组合的未来损益分布几乎是不可能的,因为金融机构的资产组合往往包含种类繁多的金融工具,且无法保留估计过程中所需要的所有相关金融工具的历史数据。因此,通常将资产组合用其市场因子来表示(资产组合价值是其所有市场因子的函数)。
所谓映射(mapping),就是通过市场因子的变化来估计资产组合的未来损益分布(或概率密度函数)。计算vaR时,首先使用市场因子当前的价格水平,利用金融定价公式对资产组合进行估值(盯市market一to一market);然后预测市场因子未来的一系列可能价格水平(是一个概率分布),并对资产组合进行重新估值;在此基础上计算资产组合的价值变化—资产组合损益,由此得到资产组合的损益分布。根据这一分布就可以求出给定置信水平下资产组合的VaR。这一过程可以用图来表示。16目前十六页\总数六十二页\编于七点计算VaR的关键在于确定证券组合未来损益的统计分布或概率密度函数。这一过程由三个基本模块构成:第一个模块是映射过程—把组合中每一种头寸的回报表示为其市场因子的函数;第二个模块是市场因子的波动性模型—预测市场因子的波动性;第三个模块是估值模型—根据市场因子的波动性估计组合的价值变化和分布。17目前十七页\总数六十二页\编于七点
3VaR计算的主要方法
在VaR计算的三个模块中,波动性模型和估值模型是重点和难点。不同的波动性模型和估值模型构成了VaR计算的不同方法。VaR计算中最有代表性的方法是历史模拟法、Delta一正态法和MonteCarlo模拟法。18目前十八页\总数六十二页\编于七点3.1历史模拟法VaR计算的基本原理和要素适用于所有的VaR计算。就历史模拟法而言,市场因子模型采用的是历史模拟的方法—用给定历史时期上所观测到的市场因子的变化,来表示市场因子的未来变化;在估值模型中,历史模拟法采用的是全值估计法,即根据市场因子的未来价格水平对头寸进行重新估计,计算出头寸的价值变化(损益);最后,在历史模拟中,将组合损益从最小到最大排序,得到损益分布,通过给定置信度下的分位数求出VaR。如对于1000个可能的损益情况,95%的置信度对应的分位数为组合的第50个最大损益值。19目前十九页\总数六十二页\编于七点考虑一个资产组合VP,其市场因子为F(i)(i=l,2,…,n),用历史模拟法计算其95%置信度下的日VaR。首先预测市场因子的日波动性,选取市场因子过去101个交易日的历史价格序列,可以得到市场因子价格的100个日变化:20目前二十页\总数六十二页\编于七点假定这100个变化在未来的一天都可能出现。于是,对于每一个市场因子,将市场因子的当前值F(i)和观测到的变化向量叮(i)相加,就可以得到100个市场因子未来可能的价格水平,以向量AF(i)n来表示:根据相关的定价公式,可以计算出市场因子当前价值和未来的可能价值。于是,可求出资产组合的未来收益。将损益从小到大排列,得到组合的未来损益分布,根据95%置信水平下的分位数(由于有100个变化样本,则95%的分位数对应的是第5个最不利的变化),可以求出VaR的值。21目前二十一页\总数六十二页\编于七点下面我们给出历史模拟法的主要计算步骤。第一,映射即首先识别出基础的市场因子,收集市场因子适当时期的历史数据,并用市场因子表示出资产组合中各个头寸的盯市价值。第二,根据市场因子过去N+1个时期的价格时间序列,计算市场因子过去N+l个时期价格水平的实际变化(得到N个变化水平)。假定未来的价格水平变化与过去完全相似,即过去N+1个时期价格的N个变化在未来都可能出现,这样结合市场因子的当前价格水平可以直接估计(模拟)市场因子未来一个时期的N种可能价格水平。22目前二十二页\总数六十二页\编于七点第三,利用相关资产定价公式,根据模拟出的市场因子的未来N种可能价格水平,求出资产组合的N种未来盯市价值,并与当前市场因子的资产组合价值比较,得到资产组合未来的N个潜在损益—损益分布。第四,根据损益分布,通过分位数求出给定置信水平下的VaR。这种方法由于采用市场因子的历史价格模拟其未来的可能价格水平,因此称为历史模拟法。23目前二十三页\总数六十二页\编于七点b.历史模拟法的优缺点(1)优点①此方法概念直观、计算简单、实施容易,容易被风险管理者和监管当局接受。②这是一种非参数化方法,不需要假定市场因子变化的统计分布,可有效处理非对称和厚尾问题。③无须估计波动性、相关性等参数,因此没有参数估计的风险;而且不需要市场动态性模型,因此避免了模型风险。④历史模拟法是一种全值估计方法,可以较好的处理非线性、市场大幅度波动的情况,捕捉各种风险。24目前二十四页\总数六十二页\编于七点(2)缺点①历史模拟法假定市场因子的未来变化与历史变化完全一样,服从独立同分布,概率密度函数不随时间而变化(或明显变化),这与实际金融市场的变化不一致。②需要大量的历史数据。③此方法得出的VaR波动性较大。④难于进行灵敏度分析。在实际应用中,通常需要考察不同市场条件下vaR的变动情况,然而历史模拟法却只能局限于给定的环境条件下,很难做出相应的调整。⑤它对计算的能力要求较高。25目前二十五页\总数六十二页\编于七点3.2De1ta一正态法分析方法是VaR计算中最为常用的方法。它利用资产组合的价值函数与市场因子间的近似关系、市场因子的统计分布(方差一协方差)简化VaR的计算。根据资产组合的价值函数的不同,分析方法可分为两类:Delta类模型和Galnma类模型。在此,我们只简单介绍Delta一正态模型。26目前二十六页\总数六十二页\编于七点a.基本原理与步骤Delta一正态模型通过映射,把大量的头寸映射为有限数量的基本市场因子;它通过市场因子而不是头寸进行计算,从而减少了计算的维度。对于包含大量头寸的组合,映射使计算更加容易实现。此外,采用市场因子,可以在公共市场上获得标准的历史信息,减少了机构对不同金融工具有关信息的搜集和储存。Delta一正态方法假定所有资产收益都呈正态分布,由于投资组合收益是正态变量的线性组合,因此它也是正态分布,即
。具体来讲,从时间t到t+1时的投资组合的收益为:其中,N表示资产数量,:表示组合中资产i的收益率,
为权重,27目前二十七页\总数六十二页\编于七点令表示组合中各资产收益率的协方差矩阵,则投资组合收益率的方差可简化为这样,风险可由假定服从正态分布的诸多因子的线性组合以及预测的协方差矩阵获得,这个方法包含了对价格变动的局部近似,能适用于数量较大的资产,且其运用十分简单。在此,我们可以利用正态分布的良好特性—置信度与分位数的对应性—计算VaR。正态分布下vaR的计算公式,即:可得:28目前二十八页\总数六十二页\编于七点更进一步,另xi代表投资组合中资产i的具体投资额,即:xi=wi几,则投资组合的VaR又可表示为:在这类模型中,对于方差一协方差矩阵的预测,使用最多的
风险矩阵,风险矩阵采用移动平均方法中的指数移动平均模型(EWMA)预测波动性。它假定过去的回报分布可以合理地预测未来情况,可用历史数据的时间序列分析估计市场因子的波动性和相关性。具体而言,EWMA给出的公式如下:上式中为衰变因子,并且必须小于1,为在己知时刻t-1的有关信息下对t时刻方差的预测,
为时刻t-1的收益率,通过递归代替:29目前二十九页\总数六十二页\编于七点Delta模型计算VaR的主要步骤:(l)风险映射识别基础市场因子,将投资组合中的金融工具映射为一系列只受单一市场因子影响的标准头寸。(2)市场因子的方差一协方差矩阵估计假设市场因子的变化服从正态分布,估计分布的参数(如方差和相关系数),得到方差一协方差矩阵。(3)估计标准头寸的Delta。(4)估计标准头寸的方差一协方差矩阵根据估计出的Delta和市场因子的方差一协方差矩阵,计算出相应的标准头寸的方差一协方差矩阵。标准头寸的方差由市场因子的方差和标准头寸对市场因子的Delta决定,相关系数与市场因子之间的相关系数数值相等,但有时符号不同。(5)组合价值变化与VaR估计使用标准的统计方法根据标准头寸的方差、协方差求出组合价值的变化,得到VaR的估计结果目前三十页\总数六十二页\编于七点b.Delta一正态法的缺点(l)优点:①该方法易于实行,因为它包含一个简单的矩阵乘数,即使是数目较大的资产,此方法也能很快运算。②作为一种参数方法,VaR经得起分析,因为边际风险和增量风险的衡量也可从VaR计算过程中得到。(2)缺点:①它不能很好地预测突发事件的风险。所谓突发事件是指一些不寻常的或极端的情况,如股票市场崩溃或汇率暴跌。但突发性风险并不是频繁地发生的,所以用最近的历史数据的概率分布很难给予充分的揭示。这是利用历史序列的所有方法的通病。31目前三十一页\总数六十二页\编于七点②许多金融资产的收益分布尾部较粗。由于VaR试图在左尾部捕捉投资组合的收益情况,尾部粗大特别麻烦。这会使基于正态近似的模型低估异常值比例和实际风险价值。③这个方法不适合度量诸如期权或抵押等非线性金融工具的风险。在这种方法下,期权的头寸可由他们的基本资产有关的Delta来表示。除上述两种方法外,vaR计算中最典型的算法还有MonteCar1O模拟法(MC)。32目前三十二页\总数六十二页\编于七点该方法是一种随机模拟方法。它用市场因子的波动参数产生市场因子未来变动的大量可能路径(而历史模拟只能根据市场因子的特定历史变动路径产生有限的未来波动情景)。虽然正态分布是MC中最常用的分布假定,而MC却无须假定市场因子服从正态分布。MonteCarlo模拟法依赖于特定的随即过程和所选择的历史数据,计算量大,计算时间长,比上述两种方法更为复杂。鉴于此,不对该种方法不做详尽阐述。33目前三十三页\总数六十二页\编于七点
4VaR工具
VaR是作为衡量投资组合风险的一种方法,但是VaR的用途比单单计算一个数值要广得多。在日常的风险管理中,一个典型的问题是:哪种头寸的变化对VaR的影响最大?这类信息是非常有用的,因为投资组合的交易量会根据交易成本的变化而变化。这一点正是VaR工具的用途所在,VaR工具包括边际VaR、增量VaR和成分VaR。34目前三十四页\总数六十二页\编于七点1.边际VaR边际VaR是指当组合中的某种资产增加一个单位时,引起的投资组合VaR的变化值。它也是投资组合VaR对权重的偏导
因为,所以得到,这样第i个资产的边际VaR可以表示为:35目前三十五页\总数六十二页\编于七点我们回忆一下风险系数β,β是用来衡量一种资产对投资组合整体风险的影响力度。β定义如下:我们也可以用矩阵形式写出向量β:总的来说,△VaR与β之间的关系可表示为:36目前三十六页\总数六十二页\编于七点2.增量VaR增量VaR是指当组合中增加了一个新的头寸时VaR的变化。我们用α表示新增加的头寸,则增量VaR就是先后VaR的差,也就是
。为尺为了简化计算,我们使用下面的近似计算,我们将围绕初始点展开成一个系列值的和,那么有:在上式中,如果离差特别小的的话,我们就可以忽略掉二次项。增量VaR可以近似地表示为:37目前三十七页\总数六十二页\编于七点3.成分VaR成分VaR是指当某个给定的组成部分从组合中剔除时VaR的变化,它体现的是组合VaR的划分。我们以边际VaR的方式来定义成分VaR,如下:这些组成部分的VaR的加总正好等于总投资组合的VaR,即:我们标准化整体投资组合的VaR,可以得出下式:提到的3种VaR工具在实际分析中都能起到很大的作用,由于它们在分析组合中单个资产与组合之间的风险的关系时,都正确地考虑了组合的风险分散化效应,所以具有很强的可操作性和现实意义,己经成为风险管理中必不可少的工具。38目前三十八页\总数六十二页\编于七点5VaR应用的一个案例假设在2006年6月21日,某商业银行有40万欧元和20万美元的净外汇头寸,我们想得知当天该商业银行针对该笔交易所面临的汇率风险。即如果给定的的置信度为95%,持有期为一天,则我们想知道在95%的可能下,明天该银行针对该笔外汇交易所可能面临的最大损失是多少。39目前三十九页\总数六十二页\编于七点5.1历史模拟法计算及分析过程我们选取2005年7月22日至2006年6月21日期间共220个交易日,美元和欧元对人民币的汇率作为样本数据。其中对于每一种货币都有汇买价和汇卖价之分,在此,我们取其中间价。即:中间汇率=(买入价+卖出价)/2。VaR的具体计算过程如下:(l)2006年6月21日,美元和欧元对人民币的汇率分别为100美元=799.58人民币和100欧元二1009.18人民币。我们依次计算这两种货币汇率过去的实际变化。(2)2005年7月22日,美元和欧元的汇率分别为811和986.705,2005年7月25日(因23、24两天为双休日),美元和欧元对人民币的汇率分别为811.11和977.145。40目前四十页\总数六十二页\编于七点(3)2005年7月22日至2005年7月25日,这两种货币汇率的变化分别为0.11(811.11一811)和一9.56(977.145一986.705)。(4)我们假定这一汇率变化在将来也可能出现,则该外汇头寸组合在2006年6月22日的可能损益为:一38020人民币(20O0O0×(0.11)/100+40000O×(-
9.56)/100)。(5)根据2005年7月25日至2005年7月26日的汇率变化,计算该外汇组合在2006年6月22日的另一种可能损益,经计算为4880人民币。我们用2005年7月22日至2006年6月21日期间共220个交易日,两种货币的中间汇率作为数据,通过以上方法我们可以得出该外汇组合在2006年6月22日共219个可能的损益值。以上计算过程可由EXCEL软件完成,具体数值见表41目前四十一页\总数六十二页\编于七点42目前四十二页\总数六十二页\编于七点43目前四十三页\总数六十二页\编于七点(6)我们将得到的219个可能损失或者收益按照从最坏到最好的顺序排列出来,由于给定的置信度为95%,则VaR就是第n个最大损失。见表5.2,则VaR为人民币32900元。即,我们有95%的把握认为,该商业银行的这笔外汇头寸在6月22日这天由于汇率的变动,所可能遭受的最大损失为人民币32900元。44目前四十四页\总数六十二页\编于七点5.2Delta一正态法计算及分析过程样本数据处理我们同样选取2005年7月22日至2006年6月21日期间共220个交易日,美元、欧元和日元对人民币的汇率作为样本数据。与上一节一样,对于每一种货币我们都取其中间汇率作为当日的收盘价。我们假设第t日某一货币汇率的收盘价为,第t-1日的收盘价为
,则该货币汇率的日收益率,如果,则由泰勒展开式,我们可得:在此我们取对数收益,作为汇率的日收益率,如此定义是基于下述考虑:45目前四十五页\总数六十二页\编于七点首先,对数函数可以使收益率的取值范围扩展到整个实数域,更适合于对金融资产的行为进行建模;其次,通过对数变换,乘法运算转换成加法运算,使得计算更为简单。多期的收益率只是单期收益率的和,并且如果单期收益率服从正态分布,那么多期收益率也是服从正态分布的;第三,推导时间序列之和的性质比推导时间序列之积的性质要容易得多,所以收益率的对数定义使收益率的统计建模变得更为简单。我们对三种货币在2005年7月22日至2006年6月21日期间共220个交易日的收盘价,利用上述公式,分别计算其收盘价的日收益率。46目前四十六页\总数六十二页\编于七点5.2.2正态分布检验首先,我们利用SPSS软件分别作出三种货币日收益率的统计分布图,见图47目前四十七页\总数六十二页\编于七点48目前四十八页\总数六十二页\编于七点49目前四十九页\总数六十二页\编于七点50目前五十页\总数六十二页\编于七点由图可知,美元、欧元和日元的日收益率呈现着明显的正态分布,但三种货币尤其是美元也存在一定程度上的尖峰和肥尾现象。由上述检验结果可知,美元日收益率的分布与正态分布存在着显著的差异,根据Delta一正态法计算的前提条件,即假定所有资产服从正态分布,可知对于欧元和美元或者日元和美元组成的外汇资产组合,我们不适合用Delta一正态法计算其VaR,因此对于上节中的40万欧元和20万美元的外汇组合,我们更适合用历史模拟法或者蒙特卡罗模拟法计算其资产组合的VaR,而如果用Delta一正态法则会不可避免地带来很大的误差。51目前五十一页\总数六十二页\编于七点5.2.3计算及分析过程假设在2006年6月21日,某商业银行有500万日元和20万欧元的外汇投资组合,下面我们来计算95%置信水平下该投资组合的日VaR。第一步,我们把当天的外汇头寸按照当天的汇率换算成等价的人民币。2006年6月21日欧元和日元对人民币的汇率分别为:100欧元=1009.18人民币,100日元二6.9718人民币。我们得到由欧元换来的人民币风险头寸2018360元和由日元换来的人民币风险头寸348590元。第二步,根据Delta一正态法计算的基本原理可知,采用Delta一正态法计算VaR的重要一步是对未来相关性和波动性的估计。在此我们采用移动平均方法中的指数移动平均模型(EWMA)来预测波动性。52目前五十二页\总数六十二页\编于七点对于汇率的波动性而言,EWMA考虑了方差的时变性,并比较好地解决了现实中存在的高频数据中(特别是计算以天为单位计的汇率风险)存在的异方差现象。这意味着我们关于汇率每天波动程度的假设是错误的,事实上,汇率当天的波动受到前一天汇率波动的影响。根据公式对于以天计算的汇率波动率,取值0.94,对于以月计算的汇率波动率,取值0.97(数据来源:MorganGuarantyTrustCompany,1996,这意味着,时段越长,异方差现象越不明显)。在本例中,我们取0.94。我们将之前计算过的欧元和日元对人民币的日收益率数据带入上式,可以得出欧元和日元对人民币汇率的方差,分别为2.995E一05和4.235E一050同理对于协方差的预测,根据公式
我们可得下式:53目前五十三页\总数六十二页\编于七点经计算可得欧元与日元的协方差为2.708E一05,由此,我们可得预测的协方差矩阵为第三步,计算VaR。首先,计算投资组合的方差,经计算可得(单位为人民币):
根据公式,取
我们可得该投资组合的VaR为:54目前五十四页\总数六十二页\编于七点对于该外汇投资组合,我们按照5.1节的方法,利用历史模拟法计算其投资组合的VaR,可得95%置信水平下该投资组合的VaR为人民币19950元。这与用Delta一正态法计算的VaR值21211元非常接近。第四步,单个VaR的简单形式为,则有(单位:人民币):
由上式可知,这些数据加总后的单一VaR值21968元人民币,大于由于分散化投资而得到的投资组合VaR值21211元人民币。55目前五十五页\总数六十二页\编于七点5.3VaR工具应用案例1.边际VaR回到关于欧元与日元所组成的外汇投资组合的例子,首
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林工商学院《音乐图像学》2023-2024学年第一学期期末试卷
- 湖南女子学院《综艺主持》2023-2024学年第一学期期末试卷
- 黑龙江农垦职业学院《草书》2023-2024学年第一学期期末试卷
- 高考物理总复习《电容器带电粒子在电场中的运动》专项测试卷含答案
- 郑州城市职业学院《管理科学与工程学科论文写作指导》2023-2024学年第一学期期末试卷
- 浙江经贸职业技术学院《影视摄像技术》2023-2024学年第一学期期末试卷
- 小学学校微信公众号信息发布工作制度
- 浙江财经大学《基础医学概论Ⅱ3(微生物学)》2023-2024学年第一学期期末试卷
- 张家口职业技术学院《法务谈判与技巧》2023-2024学年第一学期期末试卷
- 缺陷管理与风险评估实施细则
- 2023秋季初三物理 电路故障分析专题(有解析)
- 同济大学信纸
- 冲压模具设计-模具设计课件
- 高处作业安全培训课件-
- 职中英语期末考试质量分析
- 中国的世界遗产智慧树知到答案章节测试2023年辽宁科技大学
- 急性腹泻与慢性腹泻修改版
- 先天性肌性斜颈的康复
- GB/T 37518-2019代理报关服务规范
- GB/T 156-2017标准电压
- PPT沟通的艺术课件
评论
0/150
提交评论