




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27.2相似三角形
27.2.1相似三角形的判定(第1课时)一、教学目标【知识与技能】1.理解相似三角形的概念,并会用以证明和计算;2.体会用相似符号“∽”表示的相似三角形之间的边,角对应关系;3.掌握平行线分线段成比例的基本事实及其推论的应用,会用平行线判定两个三角形相似并进行证明和计算.【过程与方法】经历平行线分线段成比例的基本事实及其推论的发现过程,增强学生发现问题,解决问题的能力.【情感态度与价值观】学生在充分经历自学、探究、交流、当堂练习等活动中,获得成功的体验,调动主动学习的积极性,感受数学学习的乐趣.二、课型新授课三、课时第1课时共4课时四、教学重难点【教学重点】 平行线分线段成比例基本事实及判定两个三角形相似的定理.【教学难点】 判定三角形相似的定理的证明.五、课前准备 教师:课件、刻度尺、三角板.学生:刻度尺、三角板.六、教学过程(一)导入新课(出示课件2)教师问:1.相似多边形的特征是什么?2.怎样判定两个多边形相似?3.什么叫相似比?4.相似多边形中,最简单的就是相似三角形.如果∠A=∠A1,∠B=∠B1,∠C=∠C1,,那么△ABC与△A1B1C1相似吗?我们还有其他方法判定两个三角形相似吗?学生集体口答,教师订正.(二)探索新知知识点1平行线分线段成比例定理请分别度量l3,l4,l5.在l1上截得的两条线段AB,BC和在l2上截得的两条线段DE,EF的长度,AB:BC与DE:EF相等吗?任意平移l5,再量度AB,BC,DE,EF的长度,它们的比值还相等吗?除此之外,还有其他对应线段成比例吗?(出示课件4、5)学生动手操作后可发现:教师归纳:(出示课件6)一般地,我们有平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.符号语言:若a∥b∥c,则,,教师问:1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?(出示课件7)小组合作交流,再进行全班性的问答.出示课件8,学生独立思考后口答,教师订正.知识点2平行线分线段成比例定理的推论出示课件9~11:如图,直线l3∥l4∥l5,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段,把直线l1向左或向右任意平移,这些线段依然成比例.如果把图1中l1,l2两条直线相交,交点A刚好落到l3上,如图2(1),所得的对应线段的比会相等吗?依据是什么?如果把图1中l1,l2两条直线相交,交点A刚好落到l4上,如图2(2)所得的对应线段的比会相等吗?依据是什么?学生分组讨论后,选代表口答,教师加以订正后归纳.(出示课件12)平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.出示课件13,学生独立解答,一生板演,教师订正.考点利用平行线分线段成比例定理及推论求线段长度出示课件14,例如图,在△ABC中,DE∥BC,AC=4,AB=3,EC=1.求AD和BD.学生思考后,师生共同解答如下:解:∵AC=4,EC=1,∴AE=3.∵DE∥BC,∴∴AD=2.25,∴BD=0.75.出示课件15,学生独立解答,教师订正.知识点3相似三角形的判定定理如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.(出示课件16~17)教师问:1.△ADE与△ABC的三个角分别相等吗?2.分别度量△ADE与△ABC的边长,它们的边长是否对应成比例?3.你认为△ADE与△ABC之间有什么关系?平行移动DE的位置,你的结论还成立吗?学生分组讨论,动手操作后达成共识:通过度量,我们发现△ADE∽△ABC,且只要DE∥BC,这个结论恒成立.教师问:1.我们通过度量三角形的边长,知道△ADE∽△ABC,但要用相似的定义去证明它,我们需要证明什么?(出示课件18)2.由前面的结论,我们可以得到什么?还需证明什么?学生讨论后,带着疑问解决证明△ADE∽△ABC问题.(出示课件19)已知:如图,在△ABC中,DE//BC,且DE分别交AB,AC于点D、E.求证:△ADE∽△ABC.师生共同分析:直观告诉我们:△ADE∽△ABC,根据三角形相似的概念,要想证明两个三角形相似,必须证明三个角对应相等,三条边对应边对应成比例.由平行线分线段成比例定理,可知:,还需证明所以要将DE平移到BC上,使得BF=DE(如图),再证明:即可.证明:在△ADE与△ABC中,∠A=∠A.∵DE//BC,∴∠ADE=∠B,∠AED=∠C,过E作EF//AB交BC于F,则,∵四边形DBFE是平行四边形,∴DE=BF,∴,∴,∴△ADE∽△ABC.归纳:定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.(出示课件20)符号语言:∵DE//BC,∴△ADE∽△ABC.教师问:过点D作与AC平行的直线与BC相交,可否证明△ADE∽△ABC?如果在三角形中出现一边的平行线,那么你应该联想到什么?(出示课件21)学生分组讨论后,教师归纳:过点D作与AC平行的直线与BC相交,仍可证明△ADE∽△ABC,这与教材第31页证法雷同.题目中有平行线,可得相似三角形,然后利用相似三角形的性质,可列出比例式.出示课件22,学生独立思考后口答,教师订正.(三)课堂练习(出示课件23-29)引导学生练习课件23-29题目,巩固本课知识点,约用时20分钟。(四)课堂小结(出示课件30)本节课你有哪些收获?你还有什么困惑吗?(引导学生思考答复)师生一起提炼本节课的重要知识和必须掌握的技能:1.两条直线被一组平行线所截,所得的对应线段成比例.2.平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段成比例.3.平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.(五)课前预习预习下节课(27.2.1第2课时)的相关内容.知道利用三边判定两个三角形相似的方法.七、课后作业1、教材第31页练习第1,2题.2、七彩课堂第53~54页第2,6题.八、板书设计27.2.1相似三角形的判定(第1课时)1.定义5.例题2.基本事实3.推论4.判定定理九、教学反思关于平行线分线段成比例定理,学生没有足够体验,很难达到对定理的理解,进而影响了后续知识的掌握.所有的新知识,都要通过自身“再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司教师节员工活动方案
- 公司组织健身活动方案
- 公司生活会活动方案
- 2025年英语四级考试试题及答案
- 2025年中小学教育改革与进展试题及答案
- 2025年文化历史研究生入学考试试题及答案
- 2025年文物保护工程师资格考试试卷及答案
- 2025年数字经济时代的人才培养与发展试题及答案
- 2025年外语听说能力与实践考试题及答案
- 2025年人才招聘与选拔能力测试卷及答案
- 整本书阅读:《乡土中国》(考教衔接讲义)-2025年高考语文一轮复习(新教材新高考)
- 护理新技术项目汇报
- DL T596《电力设备预防性实验规程》知识培训
- DB11T 594.1-2017 地下管线非开挖铺设工程施工及验收技术规程 第1部分:水平定向钻施工
- 2024低空航行系统白皮书:拥抱低空经济安全智慧飞行
- 高中生禁毒教育主题班会教学课件
- 财政投资项目评审服务投标方案(技术方案)
- DB3212-T 1162-2024 学校集体用餐配送单位检验室能力建设规范
- 2024年河南焦作中考生物试题及答案1
- 医院培训课件:《导管相关静脉血栓形成专家共识》
- 帆船理论培训课程设计
评论
0/150
提交评论