放射治疗技术-第三章生物_第1页
放射治疗技术-第三章生物_第2页
放射治疗技术-第三章生物_第3页
放射治疗技术-第三章生物_第4页
放射治疗技术-第三章生物_第5页
已阅读5页,还剩45页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021/10/101第三章

临床放射生物学基础2021/10/102学习目标:掌握内容:放射线对正常组织和肿瘤细胞的放射生物学效应及其影响因素;早反应组织与晚反应组织的放射生物学特点;分次放疗的生物学基础;细胞存活曲线各参数的意义。熟悉内容:生物剂量的等效换算;放射线作用于机体后生物学效应;肿瘤细胞的增殖动力学;提高放射生物效应的方法。了解内容:肿瘤分子放射生物学。2021/10/103第一节放射生物学的基本概念放射生物学(radiobiology):是研究放射线(电离辐射)对生物体作用的学科。(观察不同质射线照射后的各种生物效应,以及不同内、外因素对生物效应的影响)临床放射生物学(clinicalradiobiology):是研究放射线对肿瘤和正常组织的作用机制及其照射后的反应过程。2021/10/104一、放射生物效应的时间顺序(电离辐射生物

效应的基本过程)各种不同质的电离辐射在生物体内能产生次级电子,引起电离,从电离辐射被吸收至观察到细胞微细结构损伤和破坏等生物效应的这段过程,称为原初作用过程。在此过程中放射能量的吸收和传递、原子的激发和电离(物理阶段)、自由基的产生、化学键的断裂等分子水平(化学阶段)的变化又引起细胞、组织器官和系统(生物阶段)的变化,最终引起整体功能变化。2021/10/105二、放射生物学的靶学说(细胞致死机制)2021/10/106(一)靶学说定义生物结构内存在对放射敏感的部分,称之为“靶”,其损伤将引发某种生物效应;电离辐射以离子簇的形式撞击靶区,击中概率遵循泊松(Poisson)分布;单次或多次击中靶区可产生某种放射生物效应,如大分子的失活或断裂等。2021/10/107(二)靶分子:基因组DNA、生物膜(三)靶学说模型单击模型多击模型单靶与多靶模型(四)靶学说局限性2021/10/108三、影响生物效应的主要因素(一)与辐射相关的因素1.辐射种类2.辐射剂量3.辐射剂量率4.分次照射5.照射体积6.照射方式2021/10/109(二)与机体有关的因素1、种系的放射敏感性种系演化越高,机体组织结构越复杂,放射敏感性越高2、个体发育的放射敏感性

敏感性随个体发育过程而逐渐降低3、不同器官、组织和细胞的放射敏感性4、亚细胞和分子水平的放射敏感性

2021/10/1010四、放射生物学相关概念自由基:指含有一个或多个不配对电子的原子、分子、离子或游离基团。活性氧:是指含有氧的活性物质,可能是氧的某些代谢产物和一些经过生化反应而产生的含氧基团。主要有以氧的单电子还原产物、氧的双电子还原产物、烷烃过氧化物ROOH、均裂产物RO·,ROO·、处于激发态的氧。2021/10/1011传能线密度:带电电离粒子在其单位长度径迹上消耗的平均能量(单位J/m)。相对生物效能:

X或γ射线引起某一生物效应所需剂量

所观察的电离辐射引起相同生物效应所需剂量

RBE

=2021/10/1012意义:主要是为了比较在剂量相同时,不同种类的电离辐射引起某一特定效应的效率的差别。即:剂量相同、辐射种类不同,产生的效应也不同;若要产生相同效应,则不同种类的辐射所需的剂量就不同。2021/10/1013LET与RBE的关系

RBE的变化是LET的函数(正相关)

LET:<10kev/um时;LET∝RBE(缓慢)LET:10~100kev/um时;LET∝RBE(迅速)

LET:>100kev/um时;LET继续增加,RBE反而下降,表明更多的射线并不能用于引起生物效应上,反而被浪费了2021/10/1014氧效应:是指受照射的生物组织、细胞或生物大分子的辐射效应随周围介质中氧浓度升高而增加。

氧+自由基

→过氧化物自由基(R00•)

在有氧条件下细胞放射敏感性增高,增高的幅度与氧浓度有关。氧增强比:是指缺氧条件下引起一定效应所需辐射剂量与有氧条件下引起同样效应所需辐射剂量的比值。其公式是:

缺氧条件下产生一定效应的剂量

有氧条件下产生同样效应的剂量OER=2021/10/1015线性二次模式与α/β值S=e-n(αd+βd2)描述了组织生物效应与分次照射及剂量之间的关系预测不同剂量分割方式的生物效应进行不同剂量分割方式的等效转换2021/10/1016不同组织射线照射后反应不同。根据细胞增殖动力学和α/β比值将正常组织分成早反应组织和晚反应组织。早反应组织:指机体内分裂、增殖活跃并对放射线早期反应强烈的组织,如上皮、黏膜、造血组织、精原细胞等;(包括大多数肿瘤组织)晚反应组织:指机体内无再增殖能力,损伤后仅以修复代偿其功能的细胞组织,如脊髓、肾、肺、肝、结缔组织等。2021/10/1017早反应组织和大多数肿瘤的α/β值大(10Gy左右);晚反应组织的α/β值小(约2~3Gy)。早、晚反应组织对不同分次照射的反应不同。晚反应组织比早反应组织有较大的修复能力,分次剂量对晚反应组织的影响比早反应组织大,因此,大分次剂量对晚反应组织更为有害。2021/10/1018第二节临床放射生物学效应一、正常组织细胞的放射生物学效应(一)细胞的放射敏感性不同群体细胞的放射敏感性

细胞和组织的放射敏感性与其分裂活动成正比,与其分化程度成反比。2021/10/1019细胞周期与放射敏感性周期指从母代细胞增殖过程某一时相到子代细胞增殖过程的同一时相的时间。细胞周期可分为4个主要时相。①G1期,指DNA合成前期,有RNA迅速合成并指导大量多种蛋白质和其他分子合成,准备合成DNA,该期大约为数小时乃至数年。②S期,指DNA合成期,此期间DNA量增加一倍,持续时间约8~30小时。2021/10/1020③G2:期,DNA合成后期,为分裂做准备,合成分裂期所需的DNA和蛋白质,人约持续1~1.5小时。④M期,有丝分裂期,无生化合成。分裂由核开始,继而细胞质分裂,两个子细胞形成。整个有丝分裂过程分为前期、中期、后期和末期四个时期。细胞处于不同时期,它的敏感性各不相同。M期细胞对射线最敏感,其次为G2期细胞、G1期细胞、早S期细胞,晚S期细胞最不敏感。2021/10/1021影响细胞放射敏感性的因素1.环境因素2.内在因素2021/10/1022(二)电离辐射对细胞周期的影响(1)G1期阻滞(2)G2期阻滞(3)S相延迟(4)S/M解偶联2021/10/1023(三)细胞存活曲线概念:⒈细胞存活细胞具有无限增殖的能力。⒉“死亡”细胞细胞失去增殖能力,即使照射后细胞的形态仍然保持完整,有能力制造蛋白质,有能力合成DNA,甚至还能再经过一次或两次有丝分裂,产生一些子细胞,但最后不能继续传代者称为“死亡”细胞。2021/10/1024⒊克隆(集落)在离体培养的细胞中,一个存活的细胞可分裂增殖成一个细胞群体。细胞存活的意义2021/10/1025细胞存活曲线1、细胞存活曲线的绘制离体细胞培养

不同剂量照射

单细胞接种

细胞培养

2周左右计算集落形成数目

计算存活率

绘制存活曲线2021/10/10262021/10/10272、细胞存活曲线的形状1)指数性存活曲线2)非指数性存活曲线2021/10/10283、细胞存活曲线有关参数的含义D0(平均致死剂量):是指细胞存活从0.1下降到0.037或从0.01下降到0.0037所需的剂量。表示受照射细胞在高剂量区的放射敏感性。D0值越大,细胞对放射越抗拒。Dq(准域剂量):是指肩区的宽度,将细胞存活曲线直线部分延长,与通过存活率为1的横轴相交点的剂量。表示亚致死损伤的修复能力,Dq值越大,说明造成细胞指数性死亡所需的剂量越大。2021/10/1029N(外推数):是指细胞内所含放射敏感区域数,即靶数。(因随实验条件改变而有较大幅度的变化,与实际情况不符,现已少用)细胞存活曲线的临床意义2021/10/10304、分次照射的细胞存活曲线2021/10/1031(四)辐射所致细胞的损伤与修复细胞放射损伤的分类:致死性损伤(lethaldamage,LD):在任何情况下都不能使细胞修复的损伤。亚致死性损伤(sublethaldamage,SLD):照射后经过一定时间能完全修复的损伤。(DNA单链断裂)潜在致死性损伤(potentiallethaldamage,PLD):受照射后在一定条件下可以修复的损伤。(DNA双链断裂)2021/10/1032(五)正常组织的放射耐受性早反应组织的特点是:组织细胞更新快,照射后损伤表现快,一般照射后2-3周表现出来,少数增殖快的组织照射后1-2天后就开始增殖。如小肠、皮肤、黏膜、生殖细胞等。晚反应组织的特点是:细胞群体增殖很慢,增殖层的细胞在数周甚至1年或更长的时间内不进行增殖更新。如脑组织、脊髓、肾、肺、肝等。2021/10/1033二、肿瘤组织的放射生物学效应(一)肿瘤细胞动力学1.肿瘤细胞动力学层次4个层次

肿瘤细胞从一个层次向另一个层次转化是持续发生的,在一些治疗的进行期间或之后出现细胞从Q层向P层次移动,称作再补充(recruitment)。从P到Q的转化也同时存在;另有一些细胞因营养不良而不能继续分裂;有些细胞由于自然分化进程不能够进入分化层次;细胞丢失:活性的转移、死亡细胞吸收。2021/10/10342.肿瘤的生长速度(1)描述肿瘤生长速度的参数①肿瘤体积倍增时间(tumorvolumedoublingtime,Td)是描述肿瘤生长速度的重要参数,由三个主要决定因素所决定:细胞周期时间(thecellcycletime,Tc);生长比例(thegrowthfraction,GF);细胞丢失率(therateofcellloss)。如果细胞周期时间短、生长比例高、细胞丢失少,则肿瘤增长速度块。2021/10/1035②潜在倍增时间(potentialdoublingtime,Tpot),用来描述肿瘤生长速度的理论参数,定义:假设在没有细胞丢失的情况下,肿瘤细胞群体增加一倍所需要的时间。这取决于细胞周期时间和生长比例。潜在倍增时间可以通过测定胸腺嘧啶标记数(LI)或S期比例(S-Phasefraction)获得:Tpot=λ×Ts/LI③细胞丢失因子(celllossfactor),肿瘤细胞的丢失可以通过计算细胞丢失因子来表达。细胞丢失因子=1-Tpot/Td2021/10/1036(2)肿瘤的指数性生长和非指数性生长指数性生长:肿瘤体积在相等的时间间隔内以一个恒定的比例增加。V=exp(0.693·T/Td)0.693是Ln2,T是时间。肿瘤体积的对数随时间呈线性生长,这是最简单的生长模式,理论上必需满足:所有细胞均在增殖,并且没有细胞丢失,也就是说肿瘤倍增时间等于细胞周期时间。实际上肿瘤生长的倍增时间要长于细胞周期时间,因为存在细胞丢失和去周期化,肿瘤生长是非指数性的。2021/10/1037(二)乏氧细胞再氧合1.氧的重要性2.肿瘤乏氧和再氧合2021/10/1038(三)肿瘤组织对辐射的反应1.辐射对肿瘤组织的影响2.肿瘤的剂量-效应曲线3.肿瘤组织的放射敏感性2021/10/1039第三节放射治疗的时间、剂量分割模式一、常规分割照射的生物学基础(一)临床放射生物学中的“4R”概念⑴细胞放射损伤的再修复⑵细胞周期再分布⑶肿瘤细胞的再增殖⑷乏氧细胞的再氧合2021/10/1040(二)分次照射后正常组织和肿瘤组织的恢复与生长2021/10/1041(三)早反应组织、晚反应组织1、早、晚反应组织放射生物学效应的差别(1)放射性损害的不同机制(2)照射后的反应(3)反应出现的时间2021/10/10422、早、晚反应组织不同放射生物学效应的意义(1)分次剂量:两种组织在分次效应上存在差别,晚反应组织比早反应组织对分次剂量变化更敏感。加大分次剂量晚反应组织损伤加重,当分次剂量大于2Gy时,晚期并发症明显增加。(2)间隔时间2021/10/1043(3)总治疗时间:由于晚反应组织更新慢,放疗期间不发生代偿性增殖,因此对治疗时间变化不敏感,缩短治疗时间会增加对肿瘤细胞的杀灭,但不会

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论