




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
NetworkDesignand Wang©UniversityacademyofNetworkDesign©Universityacademyof
Data CharacterizationData©UniversityacademyofNetworkDesign©Universityacademyof
Data DatatrafficisthesequenceofmovementofdatathroughapointoraphysicalAtypicaldataitemisacontiguoussequenceofbitsformingadatapacket.Whenthesedataitemspassthroughaphysicaldevice,thereisusuallysomeimpedimentintheformofreception,processing,andforwarding.Suchanimpedimentresultsinqueuingandcausestimedelays.Ingeneral,queueshavesuccessivearrivalsofcustomersasinputs.Thesearrivalsexperiencepossiblewaitingandservicebeforebeingoutputassuccessivedepartures.©UniversityacademyofNetworkDesign©Universityacademyof
Data Thestatisticalnatureofarrivalscanbeexpresseddifferentifsuccessivein rrivaltimes(IATs)areindependent,aspecificationoftheinitialconditionintheformofthetimeinstantatwhichtheoperationofthequeuestartsandtheprobabilitydensityfunction(pdf)ofIATsaresufficienttocomple ydescribethenatureofarrivals.Thenumberofarrivalsoveratimeintervalisanotherimportantwayofcharacterizingthenatureofarrivals.Ingeneral,thisrequiresthespecificationoftheinitialconditionandthetimeinstantsofthestartandendoftheintervaloverwhichtherandomvariablenumberofarrivalsischaracterized.©University©UniversityacademyofNetworkDesign
Data 计算机网络性能分析需要概率 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 量简常用 量及其数字特二维 量的数字特 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 概率论与数理统计是研究随机现象随机现象是通过随机试验©UniversityacademyofNetworkDesign©Universityacademyof
Data 样本空间,记 样本点:试验的单个结果或样本空间的单元素称为样本点,为由样本点组成的单点集称为基 ,也记为 当且仅当所包含的一个样本点发生 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 关于随量(及向量)的研究,是概率论的中心内随机是从静态的观点来研究随机现象,而随机 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 定义:设X是随 ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data x0F(x)F(x)单调不减,且F(0,F(0P(x1Xx2)F(x2)F©University©UniversityacademyofNetworkDesign
Data 期望和方差是 量取值的平均特n定义1(离散)若X~P{X=xk}=pkk=1,2,…nnE(X)xkpkk©UniversityacademyofNetworkDesign©Universityacademyof
Data
数学期望——描述 量取值的平均特2(连续)若X~f(x),-|x|fx)dx E(X)xf(x)dx.©UniversityacademyofNetworkDesign©Universityacademyof
Data E(cX)=cE(X),c为常数©UniversityacademyofNetworkDesign©Universityacademyof
Data 量取值波动程度的一个数字特征定义若E(X),E(X2E{[X-E(X)]2为r.vX的方差,记为D(X),或(X)
D(X E(X2P x},D(X)
[xE(X)]
fxdx ©UniversityacademyofNetworkDesign©Universityacademyof
Data D(X 若X,Y©UniversityacademyofNetworkDesign©Universityacademyof
Data 量简常用 量及其数字特二维 量的数字特 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 量( X~P{X=k}=pk(1-p)1-k,(0<p<1)
1©University©UniversityacademyofNetworkDesign
Data 设 P(Xi)p(1p)i,i0,1,2
E[X]ip(X i)ip(1p)ii0 i0
1pD[m]E[m2]{E[m]}2(1p)/p ©UniversityacademyofNetworkDesign©Universityacademyof
Data 几何分布具有 P{ nm/ m}P{ n}(1p)n证明 P( n / m
P( nm, mP( m
P( nmP( m (1 p)nm(1 p)
(1 p
n布函数中惟一具有 性的概率分©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 设进行n次独立试验,每次试验结果有:p=P(A发生),q=P(B发生),且p+q=1。若在n次试验中,A发生m次,则B发生(n-m)次,则称随机试验为n次 p(m)Cmpm(1p)nm
D[m]E[m2]{E[m]}2npqnp(1pE[m]mpE[m]mpn(m)npmn©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 泊松分布(Poisson分布) eP(Xk) k0,1,2,,k称服从参数为λ的泊松分布, X~DD[m]E[m2]{E[m]}2E[X]ipE[X]ip(iii)iiieii(i1)eeiee©Universityacademyof
Data ::C 1nn ,其中©Universityacademyof
Data
f(x) 称在区间(a,b)上服从均匀分布,记为©UniversityacademyofNetworkDesign©Universityacademyof
Data
©University©Universityacademyof
ef(x)
xx其中λ>0为常数,则称服从参数为λ的指数分布1e xF(x)0 xP( t| )P( t0t 1F(t0t)e1F(t0
P( t0P( t在连续型 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 瑞利分布(Rayleigh ef(x)e
22,0xx均值 2
42©Universityacademy©UniversityacademyofNetworkDesign
Data 量简常用 量及其数字特二维 量的数字特 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 定义设(X,Y)是二维 量,则称EXEXYEYX与Y的协方差(Covariance),记为covX,Y或 即covX,Y EXEXYEY若 D(X)0且 D(Y)0,则XY XY
cov(X,YD(X) D(Y为X与Y的相关系数(Correlation©UniversityacademyofNetworkDesign©Universityacademyof
Data 协方差常用下 计算covX,YEXYE(X)E(Y©UniversityacademyofNetworkDesign©Universityacademyof
Data 当XY1时,X与Y依概率1特别当XY1时,Y随X的增大而线性增大,此时称X与Y线性正相关;当XY1时,Y随X的增大而线性地减小,此时称X当XY变小时,X与Y的线性相关程度就变弱如果XY=0,X与Y之间就不存性关系,此时称X与Y不相 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 独立与不相关都是随量之间相互联系程度的一种反映, 量(X,Y)而言,X与Y的独立性 X,Y~N,,2,2,
©UniversityacademyofNetworkDesign©Universityacademyof
Data 协方差的性质cov(aXbY)=ab.cov(XY其中a,b为常数;D(XY)=D(X)+D(Y)2cov(X,©University©UniversityacademyofNetworkDesign
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 随,而这些有时可以通过变换来解决,和随量的分布变量的pmf和连续随量的密度函数可以分别由它们的z变换和Lace变换确定。如果两个随量具有相同的变换,则它们具有相同的分布函数,反之亦然。因此,在很多情况下,随量的参数可Lace-©UniversityacademyofNetworkDesign©Universityacademyof
Data : : ,则X的变换定义为 ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data pmf©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 定理令X为离散 GY(z)zGX(z (z)z1
©UniversityacademyofNetworkDesign©Universityacademyof
Data ©Universityacademyof©UniversityacademyofNetworkDesign ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 非负连续 量 ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 量,令LZ(s)LX(s)LY©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 设有一个过程X(t) ,若对于每一个固定的时tj(j=1,2,…) ,X(tj)是一个随 量,则X(t)称为随机过©UniversityacademyofNetworkDesign©Universityacademyof
Data 随机过程X(t,e–当te固定时,X(t)是一个确定值–当t固定,e可变时,X(t)是一个 量–当te固定时,X(t)是一个确定的时间函数
X(t)是一个随机过程©UniversityacademyofNetworkDesign©Universityacademyof
Data
©UniversityacademyofNetworkDesign©Universityacademyof
Data .©UniversityacademyofNetworkDesign©Universityacademyof
Data 设X(t),tT是一 tT,X 是一个EXX(t),t即
存在,记为mX
mX(ttTmXt
E[X(t)]
©UniversityacademyofNetworkDesign©Universityacademyof
Data 设X(t),tT是一S.P.,tT,X 如果D[X(t)]存在,记为DX(t),DX(t),tT
X(ttT的方差函数DX tDX(t)EXtm 2称σt
©UniversityacademyofNetworkDesign©Universityacademyof
Data s,tT,X(s),X(t)是两r.v.,如果cov(X(s),X(t))存在,记为CX
为X(ttT的协方差函数©UniversityacademyofNetworkDesign©Universityacademyof
Data 设X(ttT是一S.PtTX(t)X如果E[X 称X(t),tXX(ttT的均方值函数设X(t),tT是一 s,tT,X(s),X(t)是两r.v.,如果E[X(s)X 存在,记为
(st),RX(ststT为X(tt
©UniversityacademyofNetworkDesign©Universityacademyof
Data 随机过程X(ttT的协方差函数、相关函数和CX(st)RX(stmX(s)mX(tst DX(t)
(ttt X(t)RX(t,©UniversityacademyofNetworkDesign©Universityacademyof
Data 设X(t),tT和Y(t),tT是两个 设X(t),Y(t),tT是二维S.P.,stTX(s),Y 如果E[X(s)Y 存在,记为RXY(s,t)则RXY(s,t),s,t
为X(t),Y(ttT的互相关函数©UniversityacademyofNetworkDesign©Universityacademyof
Data 如果cov(X(s),Y(t))存在,记为CXY(s,t)则称CXY(s,t),s,tT 为X(t),Y(t),tT的互协方差函数.关系CXY(s,t)RXY(s,t)mX(s)mY(t),s,tT 设X(t),tT和Y(t),tT是两个S.P.,如CXY(s,t)0或 (s,t)m(s)m(t),s,tT X(ttT和Y(ttT不相关©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 。©UniversityacademyofNetworkDesign©Universityacademyof
Data Inanarrowtimeinterval,theprobabilityofanarrivalisproportionaltothetimeinterval.Inanarrowtimeinterval,theprobabilityoftwoormorearrivalsisnegligibleincomparisonwiththeprobabilityofonearrival.Numbersofarrivalsinnonoverlaptimeintervalsaremutuallyindependentofoneanother.©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data DerivationofthePoissonConsideratimeinterval(0,T].Dividethisintervalintonequalparts.Asnincreasesandtendsto∞,T/n→0andwehaveanarrowsub-intervaltendingto0.Therefore,ineachsuchsub-interval,wehaveonearrivalwithprobabilityλT/nandzeroarrivalswithprobability1−λT/n.Twoormorearrivalsoccurwithzeroprobability.Theseargumentsareaccurateinthelimit,asn→∞.Thenumberkofsub-intervalswitharrivalsinatotalofnsub-intervalsisbinomiallydistributed.©UniversityacademyofNetworkDesign©Universityacademyof
Data DerivationofthePoissonThisisthePoissonpmf.Thispmfgivestheprobabilitiesoffindingvariousnumbersofpossiblearrivalsinagiventimeinterval,ifthearrivalschemesatisfiesthepreviouslymentionedthreeproperties.©UniversityacademyofNetworkDesign©Universityacademyof
Data MeanofthePoissonrandomFromthePoissonmean,theaveragenumberofarrivalsinaunitamountoftimeisλ.VarianceofPoissonrandom©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 象都可以描述为指数分布,如呼叫的持续时间,两次电分布随量X的分布函数定如下:©UniversityacademyofNetworkDesign©Universityacademyof
Data 对于带有参数的指数分布 ©UniversityacademyofNetworkDesign©Universityacademyof
Data 指数分布的重要性是由于它是唯一的拥有无特性的连续分布随量,即无特性更准确地说常常是指Markov指数分布的另一个重要特性是它和离散的Poisson随量间隔时间之间是独立同分布,且有均值X,则在时间区间内到达的顾客数量的随量具有Poisson分布,而 ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data 指数分布中cX 1,该结果可以作为 seacademyofNetworkDesignseacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data N UniversityN ©UniversityacademyofNetworkDesign©Universityacademyof
Data 性的重要参数是Hurst系数H,是以水文学家H.E.©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data ©UniversityacademyofNetworkDesign©Universityacademyof
Data IfXisPareto,itsOr ©Universityacademyof©Universityacademyof
a ©UniversityacademyofNetworkDesign©Universityacademyof
Data AnalternativecommonformofrepresentationusestheHurstparameterHinsteadofα.HaroldEdwinHurst(1880–1978)wasaBritishhydrologist.TheHurstparameterforaParetorandomvariableis©UniversityacademyofNetworkDesign©Universityacademyof
Data TheParetorandomvariableXcanhaveanyphysicaldimension,suchaslength,mass,time,orbits(approximatingnumberofbitsbyarealnumber).Theparameterαisdimensionless,andβhasthesamedimensionasX.©UniversityacademyofNetworkDesign©Universityacademyof
Data ©Universityacademy©Universityacademyof
Data Therangeα∈(1,2]isofinteresttous.Inthisrange,meanisfinitebutthevarianceisDatatrafficinpresentdayLANsisverybursty,havinganoverallfiniteaverageModelingin rrivaltimesbetweensuccessivedatapacketsbyaParetorandomvariablewithα∈(1,2]isgainingpopular
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 泰州环保球场施工方案
- 绳索操作考试题及答案
- 陕师大历史复试题及答案
- 2025年cdfi医师上岗考试试题及答案
- 5年级上册手抄报全部总结
- 登鹳雀楼吟诵符号
- arp报文发送的描述
- 【无印良品】大众推广策划案 - 副本 - 副本
- 2025年临汾职业技术学院单招职业适应性测试题库完美版
- 2025年关于党史知识竞赛培训题库及答案
- (一模)2025年滁州市高三第一次教学质量监测 英语试卷(含标准答案)
- 2025河南中烟漯河卷烟厂招聘7人易考易错模拟试题(共500题)试卷后附参考答案
- 粮食储运与质量安全基础知识单选题100道及答案
- 第一篇 专题一 第2讲 匀变速直线运动 牛顿运动定律
- 广东广州历年中考语文现代文阅读之非连续性文本阅读7篇(截至2024年)
- 做自己的英雄主题班会
- 《苹果SWOT分析》课件
- 2024至2030年中国ICU/CCU病房数据监测研究报告
- 2025年安徽淮海实业集团招聘笔试参考题库含答案解析
- 颈椎病招商课件
- 中医治疗疼痛性疾病
评论
0/150
提交评论