下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学重要知识点苏教版2022高一数学必修一知识点梳理定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。范围:倾斜角的取值范围是0°≤α<180°。理解:(1)注意“两个方向”:直线向上的方向、x轴的正方向;(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。意义:①直线的倾斜角,体现了直线对x轴正向的倾斜程度;②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;③倾斜角相同,未必表示同一条直线。公式:k=tanαk>0时α∈(0°,90°)k<0时α∈(90°,180°)k=0时α=0°当α=90°时k不存在ax+by+c=0(a≠0)倾斜角为A,则tanA=-a/b,A=arctan(-a/b)当a≠0时,倾斜角为90度,即与X轴垂直人教版高一数学必修一知识点51.“包含”关系—子集注意:有两种可能(1)A是B的一部分(2)A与B是同一集合。反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。AíA②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)③如果AíB,BíC,那么AíC④如果AíB同时BíA那么A=B3.不含任何元素的集合叫做空集,记为Φ规定:空集是任何集合的子集,空集是任何非空集合的真子集。高一上册数学必修一知识点梳理两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平交有一条公共直线。a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。(4)二面角的面:这两个半平面叫做二面角的面。(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。(6)直二面角:平面角是直角的二面角叫做直二面角。esp.两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。高一数学必修五知识点⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⑷对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特别地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⑺如果{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.⑴数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).⑵在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.⑶若数列{
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙投资竞业书合同
- 大班数学《坐船去探险》课件
- 手足口病风趣幽默讲解
- 2024房屋修缮合同
- 小学课外活动记录20篇-20211116120635
- 2024新版家政保姆合同样本
- 2024安置房买卖合同范本(标准版)
- 2024离婚合同协议书范本范文有子女
- 2024学校食堂租赁合同
- 2024新版影视剧摄制委托贷款合同
- 小学数学北师大二年级上册七分一分与除法快乐的动物(认识倍)
- 牛人总结雅思7.5以上经验63大页超详细
- 矿山地质环境保护和土地复垦方案 编制规范指南规范
- 口腔科医疗护理技术操作规程版
- 九年级心理健康教育教案 全册
- 在例题与命题研究中实现教师专业成长
- 头颅CT精美完整课件
- 安全总监安全职责
- 附录2.1-3培养目标达成度评价报告修改
- 云南白族课件
- 消防应急预案组织结构图
评论
0/150
提交评论