驻马店市重点中学2022-2023学年中考数学四模试卷含解析_第1页
驻马店市重点中学2022-2023学年中考数学四模试卷含解析_第2页
驻马店市重点中学2022-2023学年中考数学四模试卷含解析_第3页
驻马店市重点中学2022-2023学年中考数学四模试卷含解析_第4页
驻马店市重点中学2022-2023学年中考数学四模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米2.如图,AB为⊙O的直径,C、D为⊙O上的点,若AC=CD=DB,则cos∠CAD=()A. B. C. D.3.如图,在正八边形ABCDEFGH中,连接AC,AE,则的值是()A.1 B. C.2 D.4.已知反比例函数下列结论正确的是()A.图像经过点(-1,1) B.图像在第一、三象限C.y随着x的增大而减小 D.当x>1时,y<15.如图,立体图形的俯视图是A. B. C. D.6.已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A. B.C. D.7.下列计算正确的是()A. B.0.00002=2×105C. D.8.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50° B.60° C.70° D.80°9.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=210.下列计算正确的是()A.(a)=a B.a+a=aC.(3a)•(2a)=6a D.3a﹣a=3二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在梯形ABCD中,AB∥CD,∠C=90°,BC=CD=4,AD=2,若,用、表示=_____.12.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是_____.14.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.15.如图,在△ABC中,BC=8,高AD=6,矩形EFGH的一边EF在边BC上,其余两个顶点G、H分别在边AC、AB上,则矩形EFGH的面积最大值为_____.16.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:应聘者专业素质创新能力外语水平应变能力A73857885B81828075如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)三、解答题(共8题,共72分)17.(8分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,且BF是⊙O的切线,BF交AC的延长线于F.(1)求证:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的长.18.(8分)如图,在直角坐标系xOy中,直线与双曲线相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.求m、n的值;求直线AC的解析式.19.(8分)研究发现,抛物线上的点到点F(0,1)的距离与到直线l:的距离相等.如图1所示,若点P是抛物线上任意一点,PH⊥l于点H,则PF=PH.基于上述发现,对于平面直角坐标系xOy中的点M,记点到点的距离与点到点的距离之和的最小值为d,称d为点M关于抛物线的关联距离;当时,称点M为抛物线的关联点.(1)在点,,,中,抛物线的关联点是_____;(2)如图2,在矩形ABCD中,点,点,①若t=4,点M在矩形ABCD上,求点M关于抛物线的关联距离d的取值范围;②若矩形ABCD上的所有点都是抛物线的关联点,则t的取值范围是________.20.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.21.(8分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.若AC=4,BC=2,求OE的长.试判断∠A与∠CDE的数量关系,并说明理由.22.(10分)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,求证:AB=DE23.(12分)全民健身运动已成为一种时尚,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分,运动形式ABCDE人数请你根据以上信息,回答下列问题:接受问卷调查的共有人,图表中的,.统计图中,类所对应的扇形的圆心角的度数是度.揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有人,请你估计一下该社区参加环岛路“暴走团”的人数.24.某花卉基地种植了郁金香和玫瑰两种花卉共30亩,有关数据如表:成本(单位:万元/亩)销售额(单位:万元/亩)郁金香2.43玫瑰22.5(1)设种植郁金香x亩,两种花卉总收益为y万元,求y关于x的函数关系式.(收益=销售额﹣成本)(2)若计划投入的成本的总额不超过70万元,要使获得的收益最大,基地应种植郁金香和玫瑰个多少亩?

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2、D【解析】

根据圆心角,弧,弦的关系定理可以得出===,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值.【详解】解:===,故选D.【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键.3、B【解析】

连接AG、GE、EC,易知四边形ACEG为正方形,根据正方形的性质即可求解.【详解】解:连接AG、GE、EC,则四边形ACEG为正方形,故=.故选:B.【点睛】本题考查了正多边形的性质,正确作出辅助线是关键.4、B【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;B.反比例函数y=,图象在第一、三象限,故此选项正确;C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;D.反比例函数y=,当x>1时,0<y<1,故此选项错误.故选B.点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.5、C【解析】试题分析:立体图形的俯视图是C.故选C.考点:简单组合体的三视图.6、A【解析】

以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.7、D【解析】

在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A、原式=;故本选项错误;B、原式=2×10-5;故本选项错误;C、原式=;故本选项错误;D、原式=;故本选项正确;故选:D.【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.8、C【解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.9、A【解析】

直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【详解】A、a2•a3=a5,故此选项正确;B、2a+a2,无法计算,故此选项错误;C、(-a3)3=-a9,故此选项错误;D、a2÷a=a,故此选项错误;故选A.【点睛】此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.10、A【解析】

根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】

过点A作AE⊥DC,利用向量知识解题.【详解】解:过点A作AE⊥DC于E,∵AE⊥DC,BC⊥DC,∴AE∥BC,又∵AB∥CD,∴四边形AECB是矩形,∴AB=EC,AE=BC=4,∴DE===2,∴AB=EC=2=DC,∵,∴,∵,∴,∴,故答案为.【点睛】向量知识只有使用沪教版(上海)教材的学生才学过,全国绝大部分地区将向量放在高中阶段学习.12、2.【解析】

把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.【详解】解:∵m是方程2x2﹣3x﹣2=0的一个根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.13、25°.【解析】∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°-∠3=45°-20°=25°.14、1【解析】

根据弧长公式l=代入求解即可.【详解】解:∵,∴.故答案为1.【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.15、1【解析】

设HG=x,根据相似三角形的性质用x表示出KD,根据矩形面积公式列出二次函数解析式,根据二次函数的性质计算即可.【详解】解:设HG=x.∵四边形EFGH是矩形,∴HG∥BC,∴△AHG∽△ABC,∴=,即=,解得:KD=6﹣x,则矩形EFGH的面积=x(6﹣x)=﹣x2+6x=(x﹣4)2+1,则矩形EFGH的面积最大值为1.故答案为1.【点睛】本题考查的是相似三角形的判定和性质、二次函数的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16、AA的平均成绩高于B平均成绩【解析】

根据表格求出A,B的平均成绩,比较大小即可解题.【详解】解:A的平均数是80.25,B的平均数是79.5,∴A比B更优秀,∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.【点睛】本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.三、解答题(共8题,共72分)17、(1)证明略;(2)BC=,BF=.【解析】试题分析:(1)连结AE.有AB是⊙O的直径可得∠AEB=90°再有BF是⊙O的切线可得BF⊥AB,利用同角的余角相等即可证明;(2)在Rt△ABE中有三角函数可以求出BE,又有等腰三角形的三线合一可得BC=2BE,过点C作CG⊥AB于点G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后证出△AGC∽△ABF有相似的性质求出BF即可.试题解析:(1)证明:连结AE.∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵BF是⊙O的切线,∴BF⊥AB,∴∠CBF+∠2=90°.∴∠CBF=∠1.∵AB=AC,∠AEB=90°,∴∠1=∠CAB.∴∠CBF=∠CAB.(2)解:过点C作CG⊥AB于点G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,∴△AGC∽△ABF.∴,∴.考点:切线的性质,相似的性质,勾股定理.18、(1)m=-1,n=-1;(2)y=-x+【解析】

(1)由直线与双曲线相交于A(-1,a)、B两点可得B点横坐标为1,点C的坐标为(1,0),再根据△AOC的面积为1可求得点A的坐标,从而求得结果;(2)设直线AC的解析式为y=kx+b,由图象过点A(-1,1)、C(1,0)根据待定系数法即可求的结果.【详解】(1)∵直线与双曲线相交于A(-1,a)、B两点,∴B点横坐标为1,即C(1,0)∵△AOC的面积为1,∴A(-1,1)将A(-1,1)代入,可得m=-1,n=-1;(2)设直线AC的解析式为y=kx+b∵y=kx+b经过点A(-1,1)、C(1,0)∴解得k=-,b=.∴直线AC的解析式为y=-x+.【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.19、(1)(2)①②【解析】【分析】(1)根据关联点的定义逐一进行判断即可得;(2))①当时,,,,,可以确定此时矩形上的所有点都在抛物线的下方,所以可得,由此可知,从而可得;②由①知,分两种情况画出图形进行讨论即可得.【详解】(1),x=2时,y==1,此时P(2,1),则d=1+2=3,符合定义,是关联点;,x=1时,y==,此时P(1,),则d=+=3,符合定义,是关联点;,x=4时,y==4,此时P(4,4),则d=1+=6,不符合定义,不是关联点;,x=0时,y==0,此时P(0,0),则d=4+5=9,不不符合定义,是关联点,故答案为;(2)①当时,,,,,此时矩形上的所有点都在抛物线的下方,∴,∴,∵,∴;②由①,,如图2所示时,CF最长,当CF=4时,即=4,解得:t=,如图3所示时,DF最长,当DF=4时,即DF==4,解得t=,故答案为【点睛】本题考查了新定义题,二次函数的综合,题目较难,读懂新概念,能灵活应用新概念,结合图形解题是关键.20、(1)见解析(2)【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.21、(1);(2)∠CDE=2∠A.【解析】

(1)在Rt△ABC中,由勾股定理得到AB的长,从而得到半径AO.再由△AOE∽△ACB,得到OE的长;(2)连结OC,得到∠1=∠A,再证∠3=∠CDE,从而得到结论.【详解】(1)∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB==,∴AO=AB=.∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴OE==.(2)∠CDE=2∠A.理由如下:连结OC,∵OA=OC,∴∠1=∠A,∵C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论