




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter4DigitalProcessingofContinuous-TimeSignals§4.1DigitalProcessingofContinuous-TimeSignalsDigitalprocessingofacontinuous-timesignalinvolvesthefollowingbasicsteps: (1)Conversionofthecontinuous-timesignalintoadiscrete-timesignal, (2)Processingofthediscrete-timesignal, (3)Conversionoftheprocesseddiscrete-timesignalbackintoacontinuous-timesignal§4.1DigitalProcessingofContinuous-TimeSignalsConversionofacontinuous-timesignalintodigitalformiscarriedoutbyananalog-to-digital(A/D)converterThereverseoperationofconvertingadigitalsignalintoacontinuous-timesignalisperformedbyadigital-to-analog(D/A)converter§4.1DigitalProcessingofContinuous-TimeSignalsSincetheA/Dconversiontakesafiniteamountoftime,asample-and-hold(S/H)circuitisusedtoensurethattheanalogsignalattheinputoftheA/Dconverterremainsconstantinamplitudeuntiltheconversioniscompletetominimizetheerrorinitsrepresentation§4.1DigitalProcessingofContinuous-TimeSignalsTopreventaliasing,ananaloganti-aliasingfilterisemployedbeforetheS/HcircuitTosmooththeoutputsignaloftheD/Aconverter,whichhasastaircase-likewaveform,ananalogreconstructionfilterisused§4.1DigitalProcessingofContinuous-TimeSignalsSinceboththeanti-aliasingfilterandthereconstructionfilterareanaloglowpassfilters,wereviewfirstthetheorybehindthedesignofsuchfiltersAlso,themostwidelyusedIIRdigitalfilterdesignmethodisbasedontheconversionofananaloglowpassprototypeAnti-aliasingfilterS/HA/DD/AReconstructionfilterDSPCompleteblock-diagram§4.2Samplingof
Continuous-timeSignalsLetga(t)beacontinuous-timesignalthatissampleduniformlyatt=nT,generatingthesequenceg[n]where
g[n]=ga(nT),-<n<
withTbeingthesamplingperiodThereciprocalofTiscalledthesamplingfrequencyFT,i.e.,FT=1/T§4.2.1EffectofSamplingintheFrequencyDomainwetreatthesamplingoperationmathematicallyasamultiplicationofga(t)byaperiodicimpulsetrainp(t):§4.2.1EffectofSamplingintheFrequencyDomainp(t)consistsofatrainofidealimpulseswithaperiodTasshownbelowThemultiplicationoperationyieldsanimpulsetrain:§4.2.1EffectofSamplingintheFrequencyDomaingp(t)isacontinuous-timesignalconsistingofatrainofuniformlyspacedimpulseswiththeimpulseatt=nTweightedbythesampledvaluega(nT)ofga(t)atthatinstantt=nTTheformoftheCTFTofgp(t)isgivenbyTherefore,Gp(jΩ)isaperiodicfunctionofΩconsistingofasumofshiftedandscaledreplicasofGa(jΩ),shiftedbyintegermultiplesofΩTandscaledby1/TEffectofSamplingintheFrequencyDomainKeywords!§4.2.1EffectofSamplingintheFrequencyDomainRecallNow,theCTFTGp(jW)isaperiodicfunctionofWwithaperiodWT=2p/T
∴∴§4.2.1EffectofSamplingintheFrequencyDomainAssumega(t)isaband-limitedsignalwithaCTFTGa(j)asshownbelowThespectrumP(j)ofp(t)havingasamplingperiodT=2/Tisindicatedbelow§4.2.1EffectofSamplingintheFrequencyDomainTwopossiblespectraofGp(j)areshownbelow§4.2.1EffectofSamplingintheFrequencyDomainItisevidentfromthetopfigureonthepreviousslidethatifT>2m,thereisnooverlapbetweentheshiftedreplicasofGa(j)generatingGp(j)
Ontheotherhand,asindicatedbythefigureonthebottom,ifT<2m,thereisanoverlapofthespectraoftheshiftedreplicasofGa(j)generatingGp(j)§4.2.1EffectofSamplingintheFrequencyDomainIfT>2m,ga(t)canberecoveredexactlyfromgp(t)bypassingitthroughanideallowpassfilterHr(j)withagainTandacutofffrequencycgreaterthanmandlessthanT-masshownbelow§4.2.1EffectofSamplingintheFrequencyDomainThespectraofthefilterandpertinentsignalsareshownbelow§4.2.1EffectofSamplingintheFrequencyDomainOntheotherhand,ifT<2m,duetotheoverlapoftheshiftedreplicasofGa(j),thespectrumGp(j)cannotbeseparatedbyfilteringtorecoverGa(j)becauseofthedistortioncausedbyapartofthereplicasimmediatelyoutsidethebasebandfoldedbackoraliasedintothebaseband§4.2.1EffectofSamplingintheFrequencyDomainSamplingtheorem-Letga(t)beaband-limitedsignalwithCTFTGa(j)=0for||>mThenga(t)isuniquelydeterminedbyitssamplesga(nT),-nif
T2m where
T=2/TKeywords!§4.2.1EffectofSamplingintheFrequencyDomainTheconditionT2misoftenreferredtoastheNyquistconditionThefrequencyT/2isusuallyreferredtoasthefoldingfrequency★§4.2.1EffectofSamplingintheFrequencyDomainThehighestfrequencymcontainedinga(t)isusuallycalledtheNyquistfrequencysinceitdeterminestheminimumsamplingfrequencyT=2mthatmustbeusedtofullyrecoverga(t)fromitssampledversionThefrequency2miscalledtheNyquistrate§4.2.1EffectofSamplingintheFrequencyDomainThetermofthepreviousequationfork=0isthebasebandportionofGp(j),andeachoftheremainingtermsarethefrequencytranslatedportionsofGp(j)
ThefrequencyrangeiscalledthebasebandorNyquistbandKeywords!§4.2.1EffectofSamplingintheFrequencyDomainOversampling-ThesamplingfrequencyishigherthantheNyquistrateUndersampling-ThesamplingfrequencyislowerthantheNyquistrateCriticalsampling-ThesamplingfrequencyisequaltotheNyquistrateNote:Apuresinusoidmaynotberecoverablefromitscriticallysampledversion§4.2.1EffectofSamplingintheFrequencyDomainIndigitaltelephony,a3.4kHzsignalbandwidthisacceptablefortelephoneconversationHere,asamplingrateof8kHz,whichisgreaterthantwicethesignalbandwidth,isused§4.2.1EffectofSamplingintheFrequencyDomainInhigh-qualityanalogmusicsignalprocessing,abandwidthof20kHzhasbeendeterminedtopreservethefidelityHence,incompactdisc(CD)musicsystems,asamplingrateof44.1kHz,whichisslightlyhigherthantwicethesignalbandwidth,isused§4.2.1EffectofSamplingintheFrequencyDomainExample4.1(p177)-Considerthethreecontinuous-timesinusoidalsignals:TheircorrespondingCTFTsare:§4.2.1EffectofSamplingintheFrequencyDomainThesethreetransformsareplottedbelow§4.2.1EffectofSamplingintheFrequencyDomainThesecontinuous-timesignalssampledatarateofT=0.1sec,i.e.,withasamplingfrequencyT=20rad/secThesamplingprocessgeneratesthecontinuous-timeimpulsetrains,g1p(t),g2p(t),andg3p(t)TheircorrespondingCTFTsaregivenby
§4.2.1EffectofSamplingintheFrequencyDomainPlotsofthe3CTFTsareshownbelow§4.2.1EffectofSamplingintheFrequencyDomainThesefiguresalsoindicatebydottedlinesthefrequencyresponseofanideallowpassfilterwithacutoffatc=T/2=10andagainT=0.1TheCTFTsofthelowpassfilteroutputarealsoshowninthesethreefiguresInthecaseofg1(t),thesamplingratesatisfiestheNyquistcondition,hencenoaliasing§4.2.1EffectofSamplingintheFrequencyDomainMoreover,thereconstructedoutputispreciselytheoriginalcontinuous-timesignalIntheothertwocases,thesamplingratedoesnotsatisfytheNyquistcondition,resultinginaliasingandthefilteroutputsareallequaltocos(6pt)§4.2.1EffectofSamplingintheFrequencyDomainNote:Inthefigurebelow,theimpulseappearingatΩ=6πinthepositivefrequencypassbandofthefilterresultsfromthealiasingoftheimpulseinG2(jΩ)atΩ=-14πLikewise,theimpulseappearingatΩ=6πinthepositivefrequencypassbandofthefilterresultsfromthealiasingoftheimpulseinG3(jΩ)atΩ=26π§4.2Samplingof
Continuous-timeSignalsNow,thefrequency-domainrepresentationofga(t)isgivenbyitscontinuos-timeFouriertransform(CTFT):
Thefrequency-domainrepresentationofg[n]isgivenbyitsdiscrete-timeFouriertransform(DTFT):§4.2.1EffectofSamplingintheFrequencyDomainWenowderivetherelationbetweentheDTFTofg[n]andtheCTFTofgp(t)TothisendwecomparewithAndmakeuseofg[n]=ga(nT),-∞<n<∞(4.3)(4.6)§4.2.1EffectofSamplingintheFrequencyDomainObservation:WehaveG(ejω)=Gp(jΩ)|Ω=ω/TOr,equivalently,Gp(jΩ)=
G(ejω)|ω=ΩTFromtheaboveobservationand(4.14a)§4.2.1EffectofSamplingintheFrequencyDomainWearriveatthedesiredresultgivenby§4.2.1EffectofSamplingintheFrequencyDomainTherelationderivedonthepreviousslidecanbealternatelyexpressedasFromOrfromItfollowsthatG(ejω)isobtainedfromGp(jΩ)byapplyingthemappingΩ=ω/T★★Keywords!§4.2.1EffectofSamplingintheFrequencyDomainAnotherExample4.2inPage179TheeffectofsamplinginthefrequencydomaincanbeinvestigatedusingMATLAB
Anexponentiallydecayingcontinuous-timesignalissampledattwodifferentrates.Infigure4.7-4.9,wecompareitstwospectrumsampledby2Hzand2/3Hz.§4.2.2RecoveryoftheAnalogSignalTheimpulseresponsehr(t)ofthelowpassreconstructionfilterisobtainedbytakingtheinverseDTFTofHr(j)
^Wenowderivetheexpressionfortheoutput oftheideallowpassreconstructionfilterHr(j)asafunctionofthesamplesg[n]§4.2.2RecoveryoftheAnalogSignalThus,theimpulseresponseisgivenbyTheinputtothelowpassfilteristheimpulsetrain
gp(t):§4.2.2RecoveryoftheAnalogSignalSubstitutinghr(t)=sin(ct)/(Tt/2)intheaboveandassumingforsimplicity
c=T/2=/T,weget^*^^Therefore,theoutputoftheideallowpassfilterisgivenby:whichiscalledPoissonsumformula§4.2.2RecoveryoftheAnalogSignalTheidealbandlimitedinterpolationprocessisillustratedbelowIllustrationofPoissonsumformula§4.2.2RecoveryoftheAnalogSignalItcanbeshownthatwhenΩc=ΩT/2inhr(t)=sin(Ωct)/(ΩTt/2)hr(0)=1andhr(nT)=0forn≠0Asaresult,fromWeobserveForallintegervaluesofrintherange-∞<r<∞§4.2.2RecoveryoftheAnalogSignalTherelation
holdswhetherornottheconditionofthesamplingtheoremissatisfiedHowever,ForallvaluesoftonlyifthesamplingfrequencyΩTsatisfiestheconditionofthesamplingtheorem§4.2.3
ImplicationoftheSamplingProcessConsideragainthethreecontinuous-timesignals:g1(t)=cos(6t),g2(t)=cos(14t),andg3(t)=cos(26t)TheplotoftheCTFTG1p(j)ofthesampledversiong1p(t)ofg1(t)isshownbelow§4.2.3
ImplicationoftheSamplingProcessFromtheplot,itisapparentthatwecanrecoveranyofitsfrequency-translatedversionscos[(20k6)t]outsidethebasebandbypassingg1p(t)throughanidealanalogbandpassfilterwithapassbandcenteredat=(20k6)§4.2.3
ImplicationoftheSamplingProcessForexample,torecoverthesignalcos(34pt),itwillbenecessarytoemployabandpassfilterwithafrequencyresponse whereDisasmallnumber§4.2.3
ImplicationoftheSamplingProcessLikewise,wecanrecoverthealiasedbasebandcomponentcos(6pt)fromthesampledversionofeitherg2p(t)org3p(t)bypassingitthroughanideallowpassfilterwithafrequencyresponse§4.2.3
ImplicationoftheSamplingProcessThereisnoaliasingdistortionunlesstheoriginalcontinuous-timesignalalsocontainsthecomponentcos(6pt)Similarly,fromeitherg2p(t)org3p(t)wecanrecoveranyoneofthefrequency-translatedversions,includingtheparentcontinuous-timesignalg2(t)org3(t)asthecasemaybe,byemployingsuitablefilters§4.3SamplingofBandpassSignalsTheconditionsdevelopedearlierfortheuniquerepresentationofacontinuous-timesignalbythediscrete-timesignalobtainedbyuniformsamplingassumedthatthecontinuous-timesignalisbandlimitedinthefrequencyrangefromDCtosomefrequencyTSuchacontinuous-timesignaliscommonlyreferredtoasalowpasssignal§4.3SamplingofBandpassSignalsThereareapplicationswherethecontinuous-timesignalisbandlimitedtoahigherfrequencyrangeL||
HwithL>0Suchasignalisusuallyreferredtoasthebandpasssignal
Topreventaliasingabandpasssignalcanofcoursebesampledatarategreaterthantwicethehighestfrequency,i.e.byensuring
T
2H§4.3SamplingofBandpassSignalsHowever,duetothebandpassspectrumofthecontinuous-timesignal,thespectrumofthediscrete-timesignalobtainedbysamplingwillhavespectralgapswithnosignalcomponentspresentinthesegapsMoreover,ifHisverylarge,thesamplingratealsohastobeverylargewhichmaynotbepracticalinsomesituations§4.3SamplingofBandpassSignalsAmorepracticalapproachistouseunder-samplingLet=H-LdefinethebandwidthofthebandpasssignalAssumefirstthatthehighestfrequencyHcontainedinthesignalisanintegermultipleofthebandwidth,i.e.,
H
=M()_________§4.3SamplingofBandpassSignalsWechoosethesamplingfrequencyTtosatisfytheconditionT
=2()=2H/M whichissmallerthan2H,theNyquistrateSubstitutetheaboveexpressionin★§4.3SamplingofBandpassSignalsAsbefore,Gp(j)consistsofasumofGa(j)andreplicasofGp(j)shiftedbyintegermultiplesoftwicethebandwidthDWandscaledby1/TTheamountofshiftforeachvalueofkensuresthattherewillbenooverlapbetweenallshiftedreplicasThisleadstonoaliasing§4.3SamplingofBandpassSignalsFigurebelowillustratetheideabehind00§4.3SamplingofBandpassSignalsAscanbeseen,ga(t)canberecoveredfromgp(t)bypassingitthroughanidealbandpassfilterwithapassbandgivenbyL||
H andagainofTNote:Anyofthereplicasinthelowerfrequencybandscanberetainedbypassing throughbandpassfilterswithpassbandsL-k()||
H
-k(),1
kM-1
providingatranslationtolowerfrequencyranges§4.7Sample-and-HoldCircuitFigure4.36ThebasicS/HCircu
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019-2025年环境影响评价工程师之环评技术导则与标准能力提升试卷A卷附答案
- 2025国际设备租赁合同(4)
- 中消防设计合同标准文本
- 2025煤矿劳动合同
- 2025小麦采购合同范本
- 供暖公司供暖合同样本
- ktvv承包合同样本
- 冷库青椒采购合同样本
- 个人合伙工作合同标准文本
- 冷链配送合同样本
- 检验科2025年度临床指导计划
- 口腔科设备器具项目深度研究分析报告
- 2025四川泸天化弘旭工程建设有限公司社会招聘3人笔试参考题库附带答案详解
- 电网工程设备材料信息参考价(2024年第四季度)
- 走进创业学习通超星期末考试答案章节答案2024年
- 2023年(第九届)全国大学生统计建模大赛 论文模板及说明
- GB/T 37864-2019生物样本库质量和能力通用要求
- 2021北京四中新初一分班英语试题(1)
- 毕业论文板式输送机的设计
- 三相异步电动机软启动器的研究
- 代建管理月报
评论
0/150
提交评论