版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年内蒙古自治区鄂尔多斯市普通高校高职单招数学一模测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
2.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n
3.A.B.C.D.
4.下列函数中是奇函数,且在(-∞,0)减函数的是()A.y=
B.y=1/x
C.y==x2
D.y=x3
5.如果直线3x+y=1与2mx+4y-5=0互相垂直,则m为()A.1
B.
C.
D.-2
6.将函数图像上所有点向左平移个单位长度,再把所得图像上各点的横坐标扩大到原来的2倍(纵向不变),则所得到的图像的解析为()A.
B.
C.
D.
7.已知全集U={1,2,3,4,5},集合A={1,2,5},={1,3,5},则A∩B=()A.{5}B.{2}C.{1,2,4,5}D.{3,4,5}
8.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.12
9.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/5
10.下列结论中,正确的是A.{0}是空集
B.C.D.
11.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关
12.函数的定义域为()A.(0,1]B.(0,+∞)C.[1,+∞)D.(—∞,1]
13.A.B.{3}
C.{1,5,6,9}
D.{1,3,5,6,9}
14.从1,2,3,4这4个数中任取两个数,则取出的两数都是奇数的概率是()A.2/3B.1/2C.1/6D.1/3
15.设集合U={1,2,3,4,5,6},M={1,3,5},则C∪M=()A.{2,4,6}B.{1,3,5}C.{1,2,4}D.U
16.在△ABC中,“x2
=1”是“x=1”的()
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
17.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
18.已知logN10=,则N的值是()A.
B.
C.100
D.不确定
19.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}
20.圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-4/3
B.-3/4
C.
D.2
二、填空题(20题)21.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
22.
23.
24.
25.设lgx=a,则lg(1000x)=
。
26.
27.
28.若x<2,则_____.
29.
30.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.
31.
32.若长方体的长、宽、高分别为1,2,3,则其对角线长为
。
33.函数y=3sin(2x+1)的最小正周期为
。
34.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
35.Ig2+lg5=_____.
36.
37.不等式(x-4)(x+5)>0的解集是
。
38.以点(1,0)为圆心,4为半径的圆的方程为_____.
39.在△ABC中,若acosA=bcosB,则△ABC是
三角形。
40.函数的定义域是_____.
三、计算题(5题)41.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
42.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
43.解不等式4<|1-3x|<7
44.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
45.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
四、简答题(5题)46.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
47.求证
48.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.
49.已知集合求x,y的值
50.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
五、解答题(5题)51.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
52.
53.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
54.如图,ABCD-A1B1C1D1为长方体.(1)求证:B1D1//平面BC1D;(2)若BC=CC1,,求直线BC1与平面ABCD所成角的大小.
55.
六、证明题(2题)56.△ABC的三边分别为a,b,c,为且,求证∠C=
57.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
参考答案
1.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=
2.C直线与平面垂直的判定.由已知,α∩β=L,所以L包含于β,又因为n⊥β,所以n⊥L.
3.A
4.B函数奇偶性,增减性的判断.A是非奇非偶函数;C是偶函数;D是增函数.
5.C由两条直线垂直可得:,所以答案为C。
6.B
7.B集合的运算.由CuB={1,3,5}得B={2,4},故A∩B={2}.
8.C
9.B
10.B
11.B
12.A
13.D
14.C古典概型.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有1种:1,3;则要求的概率为1/6.
15.A集合补集的计算.C∪M={2,4,6}.
16.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分条件。
17.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
18.C由题可知:N1/2=10,所以N=100.
19.C
20.A点到直线的距离公式.由圆的方程x2+y2-2x-8y+130得圆心坐标为(1,4),由点到直线的距离公式得d=,解之得a=-4/3.
21.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
22.75
23.7
24.45
25.3+alg(1000x)=lg(1000)+lgx=3+a。
26.π/2
27.12
28.-1,
29.
30.4、6、8
31.-2i
32.
,
33.
34.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
35.1.对数的运算.lg2+lg5==lg(2×5)=lgl0=l.
36.60m
37.{x|x>4或x<-5}方程的根为x=4或x=-5,所以不等式的解集为{x|x>4或x<-5}。
38.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16
39.等腰或者直角三角形,
40.{x|1<x<5且x≠2},
41.
42.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
43.
44.
45.
46.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
47.
48.
49.
50.
51.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又因为B1D1包含于平面CB1D1,所以EF//平面CB1D1.
52.
53.
∴PD//平面ACE.
54.(1)ABCD-A1B1C1D1为长方体,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林改培的农村电商与网络经济考核试卷
- 文明餐桌行动实施方案(合集12篇)
- 人工智能与电影特效技术考核试卷
- DB11T 446-2015 建筑施工测量技术规程
- DB11∕T 1819-2021 环境空气颗粒物网格化监测评价技术规范
- 安全急救课件教学课件
- 淮阴工学院《美国文学》2023-2024学年第一学期期末试卷
- 淮阴工学院《交通运输安全2》2022-2023学年第一学期期末试卷
- 2024年高考语文二轮复习:文学类文本阅读散文之理解词句(分层训练)(解析版)
- 专科护理课件教学课件
- 【语文】福建省厦门市同安区2023-2024学年八年级上学期期中考试试题(解析版)
- 烟草雪茄培训课件讲解
- 家长进课堂医学心肺复苏
- Unit3ConservationLesson3TheRoadtoDestruction课件-北师大版选择性
- 阿联酋分析报告
- 认知症培训课件
- RDPAC 数字医疗合规分项指南:与患者及患者组织的互动
- 钢结构加工及制作方案25
- 汽车电气设备构造与维修考试试题集(含答案)共7套
- 深度学习语义分割
- 花生课件完整版本
评论
0/150
提交评论