版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省如东县中考冲刺卷数学试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°2.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-63.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为()A.2 B.﹣2 C.4 D.﹣44.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是,这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x=5,于是,他很快便补好了这个常数,并迅速地做完了作业。同学们,你能补出这个常数吗?它应该是(
)A.2
B.3
C.4
D.55.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是()A. B. C. D.6.已知反比例函数,下列结论不正确的是()A.图象经过点(﹣2,1) B.图象在第二、四象限C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>27.如图,在Rt△ABC中,∠C=90°,BC=2,∠B=60°,⊙A的半径为3,那么下列说法正确的是()A.点B、点C都在⊙A内 B.点C在⊙A内,点B在⊙A外C.点B在⊙A内,点C在⊙A外 D.点B、点C都在⊙A外8.下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.两条对角线相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.平行四边形既是中心对称图形,又是轴对称图形9.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个 B.2个 C.3个 D.4个10.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,函数y=(x<0)的图像与直线y=-x交于A点,将线段OA绕O点顺时针旋转30°,交函数y=(x<0)的图像于B点,得到线段OB,若线段AB=3-,则k=_______________________.12.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.13.如图,在平行四边形中,点在边上,将沿折叠得到,点落在对角线上.若,,,则的周长为________.14.已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是___.(结果保留π)15.某文化用品商店计划同时购进一批A、B两种型号的计算器,若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元.则A型号的计算器的每只进价为_____元.16.如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_______.三、解答题(共8题,共72分)17.(8分)某食品厂生产一种半成品食材,产量百千克与销售价格元千克满足函数关系式,从市场反馈的信息发现,该半成品食材的市场需求量百千克与销售价格元千克满足一次函数关系,如下表:销售价格元千克2410市场需求量百千克12104已知按物价部门规定销售价格x不低于2元千克且不高于10元千克求q与x的函数关系式;当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x的取值范围;当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃若该半成品食材的成本是2元千克.求厂家获得的利润百元与销售价格x的函数关系式;当厂家获得的利润百元随销售价格x的上涨而增加时,直接写出x的取值范围利润售价成本18.(8分)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.19.(8分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.(1)求证:∠BDP=90°.(2)若m=4,求BE的长.(3)在点P的整个运动过程中.①当AF=3CF时,求出所有符合条件的m的值.②当tan∠DBE=时,直接写出△CDP与△BDP面积比.20.(8分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.21.(8分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21元?22.(10分)2018年4月份,郑州市教育局针对郑州市中小学参与课外辅导进行调查,根据学生参与课外辅导科目的数量,分成了:1科、2科、3科和4科,以下简记为:1、2、3、4,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学员共有人;在被调查者中参加“3科”课外辅导的有人.(2)将条形统计图补充完整;(3)已知郑州市中小学约有24万人,那么请你估计一下参与辅导科目不多于2科的学生大约有多少人.23.(12分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?24.如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A=50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.2、B【解析】
先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.3、D【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。4、D【解析】
设这个数是a,把x=1代入方程得出一个关于a的方程,求出方程的解即可.【详解】设这个数是a,把x=1代入得:(-2+1)=1-,∴1=1-,解得:a=1.故选:D.【点睛】本题主要考查对解一元一次方程,等式的性质,一元一次方程的解等知识点的理解和掌握,能得出一个关于a的方程是解此题的关键.5、D【解析】
本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.6、D【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D.7、D【解析】
先求出AB的长,再求出AC的长,由B、C到A的距离及圆半径的长的关系判断B、C与圆的关系.【详解】由题意可求出∠A=30°,AB=2BC=4,由勾股定理得AC==2,AB=4>3,AC=2>3,点B、点C都在⊙A外.故答案选D.【点睛】本题考查的知识点是点与圆的位置关系,解题的关键是熟练的掌握点与圆的位置关系.8、C【解析】
根据平行四边形的五种判定定理(平行四边形的判定方法:①两组对边分别平行的四边形;②两组对角分别相等的四边形;③两组对边分别相等的四边形;④一组对边平行且相等的四边形;⑤对角线互相平分的四边形)和平行四边形的性质进行判断.【详解】A、一组对边平行,另一组对边相等的四边形不是平行四边形;故本选项错误;B、两条对角线互相平分的四边形是平行四边形.故本选项错误;C、两组对边分别相等的四边形是平行四边形.故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;故选:C.【点睛】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.9、C【解析】
①如图,由平行线等分线段定理(或分线段成比例定理)易得:;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G为AC中点,所以,S△AGB=S△BGC=,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G为AC中点,∴S△ABG=S△BCG=,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.10、B【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A.某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B.根据平均数是4求得a的值为2,则方差为[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C.12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.二、填空题(本大题共6个小题,每小题3分,共18分)11、-3【解析】
作AC⊥x轴于C,BD⊥x轴于D,AE⊥BD于E点,设A点坐标为(3a,-a),则OC=-3a,AC=-a,利用勾股定理计算出OA=-2a,得到∠AOC=30°,再根据旋转的性质得到OA=OB,∠BOD=60°,易证得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,则△ABE为等腰直角三角形,利用等腰直角三角形的性质得到3-=(-3a+a),求出a=1,确定A点坐标为(3,-),然后把A(3,-)代入函数y=即可得到k的值.【详解】作AC⊥x轴与C,BD⊥x轴于D,AE⊥BD于E点,如图,点A在直线y=-x上,可设A点坐标为(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直线OA绕O点顺时针旋转30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四边形ACDE为矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE为等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A点坐标为(3,-),而点A在函数y=的图象上,∴k=3×(-)=-3.故答案为-3.【点睛】本题是反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用勾股定理、旋转的性质以及等腰直角三角形的性质进行线段的转换与计算.12、小李.【解析】
解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.13、6.【解析】
先根据平行线的性质求出BC=AD=5,再根据勾股定理可得AC=4,然后根据折叠的性质可得AF=AB=3,EF=BE,从而可求出的周长.【详解】解:∵四边形是平行四边形,∴BC=AD=5,∵,∴AC===4∵沿折叠得到,∴AF=AB=3,EF=BE,∴的周长=CE+EF+FC=CE+BE+CF=BC+AC-AF=5+4-3=6故答案为6.【点睛】本题考查了平行四边形的性质,勾股定理,折叠的性质,三角形的周长计算方法,运用转化思想是解题的关键.14、8π【解析】
根据圆锥的侧面积=底面周长×母线长÷2公式即可求出.【详解】∵圆锥体的底面半径为2,∴底面周长为2πr=4π,∴圆锥的侧面积=4π×4÷2=8π.故答案为:8π.【点睛】灵活运用圆的周长公式和扇形面积公式.15、40【解析】
设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据“若购进A型计算器10只和B型计算器8只,共需要资金880元;若购进A型计算器2只和B型计算器5只,共需要资金380元”,即可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】设A型号的计算器的每只进价为x元,B型号的计算器的每只进价为y元,根据题意得:,解得:.答:A型号的计算器的每只进价为40元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16、16【解析】
根据题意得S△BDE:S△OCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由S△OCE=9得ab=8,故可得解.【详解】解:设D(a,b)则A(a,0),B(a,2b)∵S△BDE:S△OCE=1:9∴BD:OC=1:3∴C(0,3b)∴△COE高是OA的,∴S△OCE=3ba×=9解得ab=8k=a×2b=2ab=2×8=16故答案为16.【点睛】此题利用了:①过某个点,这个点的坐标应适合这个函数解析式;②所给的面积应整理为和反比例函数上的点的坐标有关的形式.三、解答题(共8题,共72分)17、(1);(2);(3);当时,厂家获得的利润y随销售价格x的上涨而增加.【解析】
(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:p≤q,进而得出x的取值范围;(3)①利用顶点式求出函数最值得出答案;②利用二次函数的增减性得出答案即可.【详解】(1)设q=kx+b(k,b为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:,解得:,∴q与x的函数关系式为:q=﹣x+14;(2)当产量小于或等于市场需求量时,有p≤q,∴x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4;(3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:y=qx﹣2p=﹣x2+13x﹣16=﹣(x)2;②∵当x时,y随x的增加而增加.又∵产量大于市场需求量时,有4<x≤10,∴当4<x时,厂家获得的利润y随销售价格x的上涨而增加.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.18、(1)60;90°;统计图详见解析;(2)300;(3).【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率.试题解析:(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则P==.考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法19、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.【解析】
由知,再由知、,据此可得,证≌即可得;
易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.【详解】如图1,,,,、,,,≌,.,,,,,四边形ABEF是矩形,设,则,,,,,≌,,≌,,在中,,即,解得:,的长为1.如图1,当点C在AF的左侧时,,则,,,,在中,由可得,解得:负值舍去;如图2,当点C在AF的右侧时,,,,,,在中,由可得,解得:负值舍去;综上,m的值为或;如图3,过点D作于点G,延长GD交BE于点H,≌,,又,且,,当点D在矩形ABEF的内部时,由可设、,则,,则;如图4,当点D在矩形ABEF的外部时,由可设、,则,,则,综上,与面积比为或.【点睛】本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.20、2【解析】试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,当a=1时,原式=14+16﹣1﹣1=2.21、(1)10,1;(2).【解析】
(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对称轴为直线,可知点关于对称轴的对称点是,再根据图象判断出x的取值范围即可.【详解】解:(1)图象过点,,解得..的顶点坐标为.,∴当时,最大=1.答:该商品的销售单价为10元时,每天的销售利润最大,最大利润为1元.(2)∵函数图象的对称轴为直线,可知点关于对称轴的对称点是,又∵函数图象开口向下,∴当时,.答:销售单价不少于8元且不超过12元时,该种商品每天的销售利润不低于21元.【点睛】本题考查了待定系数法求二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《女生健美操》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《药品与生物制品检测》2023-2024学年第一学期期末试卷
- 2025贵州省建筑安全员《B证》考试题库及答案
- 贵阳人文科技学院《室内空气污染监测与治理实验》2023-2024学年第一学期期末试卷
- 广州珠江职业技术学院《电路分析实验》2023-2024学年第一学期期末试卷
- 2025天津市安全员-C证考试题库
- 广州应用科技学院《女性文学与女性文化研究》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《城乡规划设计基础II》2023-2024学年第一学期期末试卷
- 广州铁路职业技术学院《电化学与腐蚀原理》2023-2024学年第一学期期末试卷
- 2025云南省建筑安全员-C证考试(专职安全员)题库附答案
- 2024(部编版)道德与法治九年级上册 第二单元 民主与法治 单元测试(学生版+解析版)
- YDT 4525-2023通信局(站)液冷系统总体技术要求
- 基因检测销售基础知识培训手册
- 创新人才认证(解决方案)考试题库(附答案)
- 3年级数学三位数除以一位数2000题
- 20以内最大最小能填几专项练习126+129题
- 2024初中数学竞赛9年级竞赛辅导讲义专题13 旋转变换含答案
- 某市中心人民医院急救中心改扩建项目可行性研究报告
- 项目实施的保障和支持措施
- 2023-2024学年深圳市南山区高三数学下学期一模考试卷附答案解析
- 统筹经营策划方案
评论
0/150
提交评论