第四章能带理论_第1页
第四章能带理论_第2页
第四章能带理论_第3页
第四章能带理论_第4页
第四章能带理论_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章能带理论第1页,共34页,2023年,2月20日,星期三将T()和H同时作用在任意函数f(r)上,由于2在正交变换下形式不变,而坐标旋转、反演、反映等都是正交变换,所以,第2页,共34页,2023年,2月20日,星期三而电子的势能函数U(r)应具有与晶格相同的对称性,即由于f(r)是任意函数,所以T()与H可对易由此可以可得一个推论:若n,k(r)是晶体波动方程的解,那么,T()n,k(r)也是方程的解,且n,k(r)与T()n,k(r)有相同的能量本征值。第3页,共34页,2023年,2月20日,星期三在晶体中电子运动的本征态波函数为Bloch函数这里n为能带标记,k为简约波矢,对应的能量本征值为En(k)。将T()作用在n,k(r)上得,由于是正交变换,因此,有另外,由于也是以Rl为周期的周期函数,因此,可以改写为第4页,共34页,2023年,2月20日,星期三这表明,用T()作用在Bloch函数的结果只是将简约波矢k变换到另一个简约波矢k。根据上面的推论,它们应具有相同的能量本征值。所以,有这表明,在k空间中En(k)具有对称性,将取遍晶体点群的所有对称操作,上式都成立。于是,我们就证明了,在k空间中En(k)具有与晶体点群完全相同的对称性。第5页,共34页,2023年,2月20日,星期三另外,由于在晶体中电子运动的哈密顿算符是实算符,H*=H,所以,如果n,k(r)是方程的解,那么*n,k(r)也是方程的解,且这两个解具有相同的能量本征值。即在晶体中,第6页,共34页,2023年,2月20日,星期三另一方面,用-k取代k,得

需要指出的是,这个结论不依赖于晶体的点群对称性,不管晶体中是否有对称中心,在k空间中En(k)总是有反演对称的。这实际上是时间反演对称性的结果。

从以上讨论可以看出,对于同一能带,有来自于晶格的周期性来自于晶体的点群对称性来自于时间反演对称性第7页,共34页,2023年,2月20日,星期三PP’’P’kxky以二维正方晶格为例,二维正方晶格的点群是C4V(4mm),所以,对于一般位置P,在简约区中共有8个点与P点对称相关。在这些点,电子都有相同的能量En(k)。因此,我们只需研究清楚简约区中1/8空间中电子的能量状态,就可以知道整个k空间中的能量状态了。我们将这部分体积称为简约区的不可约体积。依此类推,对于立方晶系的Oh(m3m)点群,只需研究(1/48)b即可。第8页,共34页,2023年,2月20日,星期三XZMkxky-/a/a-/a

对于一般位置k,简约区中对称相关的波矢量数就等于点群的阶数。但若k在简约区中的某些特殊位置(对称点、对称轴或对称面)上,即在晶体点群中,存在某些对称操作,使得k=k

或k=k+Gl这时,简约区中等价波矢量数就少于点群的阶数。在二维正方晶格的简约区中,k有以下特殊位置:第9页,共34页,2023年,2月20日,星期三MXRZST简单立方晶格的简约区中k的特殊位置:第10页,共34页,2023年,2月20日,星期三二、自由电子的能带自由电子的能量为这里,k’为广延波矢,不一定在简约区中,但我们一定可以找到唯一一个倒格矢Gn’,使得k为简约波矢。1.一维情况k为简约波矢第11页,共34页,2023年,2月20日,星期三为简单,取k的单位为En(0)(k)的单位为第一能带:n=1,n’=0相应波函数:第二能带:n=2,n’=-1相应波函数:第三能带:n=3,n’=1相应波函数:第12页,共34页,2023年,2月20日,星期三2.二维情况:例:二维正方晶格的简约区中沿X(即kx)轴作出En(0)(k)曲线。为简单,取kx、ky的单位为En(0)(k)的单位为XZMkxky-/a/a-/a在X轴上,ky=0第13页,共34页,2023年,2月20日,星期三(0,0)(1,0)(1,0)(1)1,(1,1)(0,1)(0,1)(1,1)(1,1)相应的波函数为显然,当n1和n2的绝对值最小时,相应的能量最低。(第一布里渊区)(单)相应的波函数:第14页,共34页,2023年,2月20日,星期三第一近邻倒格点:(单)波函数:(双)波函数:{(单)波函数:第15页,共34页,2023年,2月20日,星期三第二近邻倒格点:(双)相应的波函数:{(双)相应的波函数:{第16页,共34页,2023年,2月20日,星期三LXU,KLXU,KEnergy(eV)LXU,K第17页,共34页,2023年,2月20日,星期三§6.6能态密度和费米面一、能态密度1.定义能态密度:dSdkkxkyEE+dEdZ为能量在E-E+dE两等能面间的能态数(考虑了电子自旋),即能态密度为能带中单位能量间隔内的电子能态数。dZ=2(k)(k空间中能量在E-E+dE两等能面间的体积)第18页,共34页,2023年,2月20日,星期三2.近自由电子的能态密度对于自由电子:在k空间中,能量为E的等能面是半径为的球面,在球面上第19页,共34页,2023年,2月20日,星期三

考虑周期场的影响,在近自由电子情况下,周期场的影响主要表现在布里渊区边界附近,而离布里渊区边界较远处,周期场对电子运动的影响很小。以简单立方晶体为例,考察第一布里渊区中等能面的一个二维截面。在布里渊区边界面的内外侧附近各作一个自由电子的等能面(球面)。第20页,共34页,2023年,2月20日,星期三0QQ’PNMM’在布里渊区边界面的内侧:对自由电子:EP(0)=EQ(0)考虑周期场的影响:EQ(0)↘EQ,EP(0)EP

所以,EP>EQ在布里渊区边界面的外测:对自由电子:EN(0)=EM(0),考虑周期场影响后,EM(0)↗EM,EN(0)EN,即,考虑周期场影响后,EM>EN。所以,考虑周期场影响后,在布里渊区边界面的内侧与外侧等能面均形成向外突出的凸面。第21页,共34页,2023年,2月20日,星期三近自由电子的等能面近自由电子的能态密度EA第22页,共34页,2023年,2月20日,星期三N(E)N(E)EBⅡEBⅡECⅠECⅠEE当ECⅠ>EBⅡ时,出现能带重叠;当ECⅠ<EBⅡ时,有能隙(禁带)。第23页,共34页,2023年,2月20日,星期三3.紧束缚近似的能态密度

以简单立方晶格s带为例来研究紧束缚近似的能态密度的特征。

在k=0,即能带底附近,等能面近似为球面,但随着E的增大,等能面明显偏离球面。第24页,共34页,2023年,2月20日,星期三N(E)E0E0–6J1E0–2J1E0+6J1E0+2J1紧束缚近似的等能面紧束缚近似的能态密度

在、X、M和R点处,kE=0,这些点称为VanHove奇点,这些点都是布里渊区中的高对称点。E(Γ)E(X)E(M)E(R)第25页,共34页,2023年,2月20日,星期三二、费米面这里仅就近自由电子的费米面结构进行讨论。对金属,由于EF0>>KBT,所以,在T>0时,只有费米面附近的少量电子受到热激发,其费米半径的相对变化为在室温下,这个比值约为10-2,因此,可以认为金属的费米面基本上与T无关。第26页,共34页,2023年,2月20日,星期三1.费米面的构造步骤

根据晶体结构画出倒易空间中扩展的布里渊区图形;按电子浓度求出相应的费米半径,并作出费米球

(或费米园);将处在各个布里渊区中的费米球(园)分块按倒格矢

平移到简约区中,来自第n个布里渊区的对应于第n个

能带,于是在简约区中得到对应于各个能带的费米面

图形;按照近自由电子作必要的修正。第27页,共34页,2023年,2月20日,星期三2.修正的依据

电子的能量只在布里渊区边界附近偏离自由电子能量,

等能面在布里渊区边界面附近发生畸变,形成向外突

出的凸包;等能面几乎总是与布里渊区边界面垂直相交;费米面所包围的总体积仅依赖于电子浓度,而不取决

于电子与晶格相互作用的细节;周期场的影响使费米面上的尖锐角圆滑化。第28页,共34页,2023年,2月20日,星期三证明在一般情况下,等能面与布里渊区边界面垂直相交:在k空间中,En(k)具有反演对称性,En(k)=En(-k)又由于En(k)的平移对称性,En(k)=En(kGn’)在布里渊区边界面附近,将k分解为k=k∥+k,由于布里渊区边界面是倒格矢的垂直平方面,所以,在布里渊区边界面上,有第29页,共34页,2023年,2月20日,星期三沿布里渊区边界面的法线方向上,如果沿一个边界面的法线方向上处处都有那么,与该边界面相交的等能面必与此边界面垂直。第30页,共34页,2023年,2月20日,星期三例:二维正方晶格近自由电子的费米面图形。设二维晶格的晶格常数为a,晶体的原胞数为N,k的分布密度:如果晶体中平均每个原子有个价电子,称其电子浓度为电子/原子。对于简单晶格,每个原胞中只有一个原子,则晶体的价电子总数为第31页,共34页,2023年,2月20日,星期三其中为简约区的内切园半径电子浓度kF/

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论