版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足,则复数在复平面内的对应点所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n()个整点,则称函数f(x)为n阶整点函数.有下列函数:①②③④其中是一阶整点的是()A.①②③④ B.①③④ C.④ D.①④3.下列等式中,错误的是()A. B.C. D.4.如图,用6种不同的颜色把图中A,B,C,D四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A.400 B.460 C.480 D.4965.甲、乙、丙、丁、戊五名同学参加某种技术竞赛,决出了第一名到第五名的五个名次,甲、乙去询问成绩,组织者对甲说:“很遗憾,你和乙都未拿到冠军”;对乙说:“你当然不会是最差的”.从组织者的回答分析,这五个人的名次排列的不同情形种数共有()A. B. C. D.6.设,且,则下列不等式恒成立的是()A. B.C. D.7.若,则()A.8 B.7 C.6 D.58.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为()A. B. C. D.9.已知等差数列的公差为2,前项和为,且,则的值为A.11 B.12 C.13 D.1410.()A.0 B. C.1 D.211.已知集合,,则=()A. B. C. D.12.从A,B,C,D,E5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A.24 B.48C.72 D.120二、填空题:本题共4小题,每小题5分,共20分。13.已知线段AB长为3,A、B两点到平面的距离分别为1与2,则AB所在直线与平面所成角的大小为________.14.“”的否定是__________.15.已知函数,则__________________.16.设,若不等式对任意实数恒成立,则取值集合是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,.当时,求的值;当时,是否存在正整数n,r,使得、、,依次构成等差数列?并说明理由;当时,求的值用m表示.18.(12分)在锐角中,内角,,的对边分别为,,,且.(Ⅰ)求的值;(Ⅱ)若,的面积为,求的值.19.(12分)设函数f(x)=,求函数f(x)的单调区间.20.(12分)设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=1.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,并求此定值.21.(12分)新高考3+3最大的特点就是取消文理科,除语文、数学、外语之外,从物理、化学、生物、政治、历史、地理这6科中自由选择三门科目作为选考科目.某研究机构为了了解学生对全理(选择物理、化学、生物)的选择是否与性别有关,觉得从某学校高一年级的650名学生中随机抽取男生,女生各25人进行模拟选科.经统计,选择全理的人数比不选全理的人数多10人.(1)请完成下面的2×2列联表;选择全理不选择全理合计男生5女生合计(2)估计有多大把握认为选择全理与性别有关,并说明理由;(3)现从这50名学生中已经选取了男生3名,女生2名进行座谈,从中抽取2名代表作问卷调查,求至少抽到一名女生的概率.0.150.100.050.0250.0100.0050.0012.0722.0763.8415.0246.6357.87910.828附:,其中.22.(10分)已知直线(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点的直角坐标为,直线与曲线C的交点为,,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】,对应的点为,在第四象限,选D.2、D【解析】
根据新定义的“一阶整点函数”的要求,对于四个函数一一加以分析,它们的图象是否通过一个整点,从而选出答案即可.【详解】对于函数,它只通过一个整点(1,2),故它是一阶整点函数;
对于函数,当x∈Z时,一定有g(x)=x3∈Z,即函数g(x)=x3通过无数个整点,它不是一阶整点函数;
对于函数,当x=0,-1,-2,时,h(x)都是整数,故函数h(x)通过无数个整点,它不是一阶整点函数;
对于函数,它只通过一个整点(1,0),故它是一阶整点函数.
故选D.【点睛】本题主要考查函数模型的选择与应用,属于基础题,解决本题的关键是对于新定义的概念的理解,即什么叫做:“一阶整点函数”.3、C【解析】分析:计算每一选项的左右两边,检查它们是否相等.详解:通过计算得到选项A,B,D的左右两边都是相等的.对于选项C,,所以选项C是错误的.故答案为C.点睛:本题主要考查排列组合数的计算,意在考查学生对这些基础知识的掌握水平和基本计算能力.4、C【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为:C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.5、D【解析】分析:先排乙,再排甲,最后排剩余三人.详解:先排乙,有种,再排甲,有种,最后排剩余三人,有种因此共有,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——“间接法”;(5)“在”与“不在”问题——“分类法”.6、D【解析】
逐一分析选项,得到正确答案.【详解】由已知可知,可以是正数,负数或0,A.不确定,所以不正确;B.当时,两边同时乘以,应该,所以不正确;C.因为有可能等于0,所以,所以不正确;D.当时,两边同时乘以,,所以正确.故选D.【点睛】本题考查了不等式的基本性质,属于简单题型.7、D【解析】
由得,即,然后即可求出答案【详解】因为,所以所以即,即解得故选:D【点睛】本题考查的是排列数和组合数的计算,较简单.8、C【解析】
在下雨条件下吹东风的概率=既吹东风又下雨的概率下雨的概率【详解】在下雨条件下吹东风的概率为,选C【点睛】本题考查条件概率的计算,属于简单题.9、C【解析】
利用等差数列通项公式及前n项和公式,即可得到结果.【详解】∵等差数列的公差为2,且,∴∴∴.故选:C【点睛】本题考查了等差数列的通项公式及前n项和公式,考查计算能力,属于基础题.10、C【解析】
根据定积分的意义和性质,,计算即可得出.【详解】因为,故选C.【点睛】本题主要考查了含绝对值的被积函数的定积分求值,定积分的性质,属于中档题.11、B【解析】
根据交集的概念,结合题中条件,即可求出结果.【详解】在数轴上画出集合A和集合B,找出公共部分,如图,可知故选B【点睛】本题主要考查集合交集的运算,熟记概念即可,属于基础题型.12、C【解析】
根据题意,分2种情况讨论:①不参加任何竞赛,此时只需要将四个人全排列,对应参加四科竞赛即可;②参加竞赛,依次分析与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论.【详解】参加时参赛方案有(种),不参加时参赛方案有(种),所以不同的参赛方案共72种,故选C.【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】
根据A、B两点与平面的位置分类讨论,再解三角形求线面角.【详解】A,B两点在平面同侧时,如图:为AB所在直线与平面所成角,因为A,B两点在平面异侧时,,所以AB所在直线与平面所成角为故答案为:或【点睛】本题考查线面角以及直线与平面位置关系,考查基本分析求解能力,属中档题.14、【解析】分析:根据的否定为得结果.详解:因为的否定为,所以“”的否定是点睛:对全称(存在性)命题进行否定的两步操作:①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定;②对原命题的结论进行否定.的否定为,的否定为.15、【解析】
对函数求导,再令可求出,于是可得出函数的解析式。【详解】对函数求导得,,解得,因此,,故答案为:.【点睛】本题考查导数的计算,在求导数的过程中,注意、均为常数,可通过在函数解析式或导数解析式赋值解得,考查运算求解能力,属于中等题。16、【解析】
将不等式转化为,分别在、、、的情况下讨论得到的最大值,从而可得;分别在、、的情况去绝对值得到不等式,解不等式求得结果.【详解】对任意实数恒成立等价于:①当时,②当时,③当时,④当时,综上可知:,即当时,,解得:当时,,无解当时,,解得:的取值集合为:本题正确结果;【点睛】本题考查绝对值不等式中的恒成立问题,关键是能够通过分类讨论的思想求得最值,从而将问题转化为绝对值不等式的求解,再利用分类讨论的思想解绝对值不等式即可得到结果.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)不存在;(3).【解析】
在的二项式定理中,先令得所有项系数和,再令得常数项,然后相减即得.将变成后,利用二项展开式的通项公式可得,再假设存在正整数n,r满足题意,利用等差数列的性质得,化简整理,解方程即可判断存在性;求得,2,3的代数式的值,即可得到所求结论.【详解】解:,,当时,令和,可得:,,故;当时,假设存在正整数n,r,使得、、,依次构成等差数列,由二项式定理可知,,若、、成等差数列,则,即,即,化简得,即为,若、、成等差数列,同理可得,即有,即为,化为,可得,方程无解,则不存在正整数n,r,使得、、,依次构成等差数列;,当时,;当时,;当时,;可得时,.【点睛】本题考查二项式定理及等差数列的性质,组合数公式的运用,考查化简整理的运算能力,属于综合题.18、(1).(2).【解析】试题分析:(1)由题意化简得,由锐角三角形,得,,所以;(2)由,得,所以,由余弦定理解得.试题解析:(Ⅰ),,又为锐角三角形,,,.(Ⅱ)由,得,,,,即.点睛:本题考查解三角形的应用.解三角形在高考中属于基本题型,学生必须掌握其基本解法.本题中涉及到三角形的转化,二倍角公式的应用,以及面积公式、余弦定理的应用.学生需充分掌握三角函数化简及解三角形的公式,才能把握解题.19、单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1]【解析】
先求出f(x)的导数f′(x),令f′(x)=0,得出零点.讨论零点两侧导数正负即可解出答案(注意定义域)【详解】解:f′(x)=-ex+ex=ex,由f′(x)=0,得x=1.因为当x<0时,f′(x)<0;当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1].【点睛】本题主要考察利用导数求函数单调区间,属于基础题.20、(1);(2)证明见解析.【解析】解:(1)方程7x-4y-12=1可化为y=x-3,当x=2时,y=.又f′(x)=a+,于是,解得故f(x)=x-.(2)证明:设P(x1,y1)为曲线上任一点,由f′(x)=1+知,曲线在点P(x1,y1)处的切线方程为y-y1=(1+)·(x-x1),即y-(x1-)=(1+)(x-x1).令x=1得,y=-,从而得切线与直线x=1,交点坐标为(1,-).令y=x,得y=x=2x1,从而得切线与直线y=x的交点坐标为(2x1,2x1).所以点P(x1,y1)处的切线与直线x=1,y=x所围成的三角形面积为|-||2x1|=2.曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,此定值为2.21、(1)见解析;(2),理由见解析;(3)【解析】
(1)完善列联表得到答案.(2)计算,对比数据得到答案.(3)先计算没有女生的概率,再计算得到答案.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年家用装饰品代理销售合同
- 2024年工程建设项目劳务总承包合同
- 2024年旅行社全职员工劳务合同范本
- 2024年供应链管理合同:产品采购与分销协议
- 2024年国际金融衍生品交易与风险管理合同
- 2024年基础设施建设项目咨询服务协议
- 专利技术转让诉讼协议(2024年版)
- 2024年学校围墙维修合同
- 2024年制冷设备交易合同
- 2024年城市公共服务承包合同
- 保险机构法人名单(截至2023年12月末)
- 全国职业规划大赛成长赛道
- 湖南省长沙市长郡教育集团等校联考2023-2024学年九年级下学期4月期中语文试题
- 2024年中考语文记叙文阅读专讲专练词语理解
- 新高考教学质量考核方案
- 中华民族共同体概论课件第六讲五胡入华与中华民族大交融(魏晋南北朝)
- 山西省太原市2023-2024学年五年级上学期期中数学试卷
- 4.1DNA是主要的遗传物质课件高一下学期生物人教版必修2
- 人民群众是历史的创造者
- 六年级上册数学常考易错应用题(100道)
- (高清版)DZT 0208-2020 矿产地质勘查规范 金属砂矿类
评论
0/150
提交评论