版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调递减区间是()A. B.与C.与 D.2.函数在上单调递减,且为奇函数,若,则满足的的取值范围是()A. B. C. D.3.设集合,则()A. B. C. D.4.设实数a,b,c满足a+b+c=1,则a,b,c中至少有一个数不小于()A.0 B. C. D.15.已知双曲线与双曲线,给出下列说法,其中错误的是()A.它们的焦距相等 B.它们的焦点在同一个圆上C.它们的渐近线方程相同 D.它们的离心率相等6.函数的周期,振幅,初相分别是()A. B. C. D.7.直线y=x与曲线y=xA.52 B.32 C.28.已知随机变量服从正态分布,若,则等于()A.B.C.D.9.已知函数,则等于()A.-1 B.0 C.1 D.10.在平面直角坐标系xOy中,圆C1:经过伸缩变换后得到线C2,则曲线C2的方程为()A.4x2+y2=1 B.x2+4y2=1 C.1 D.x2111.抛物线和直线所围成的封闭图形的面积是()A. B. C. D.12.如图,在棱长为的正方体中,为的中点,为上任意一点,、为上两点,且的长为定值,则下面四个值中不是定值的是()A.点到平面的距离B.直线与平面所成的角C.三棱锥的体积D.△的面积二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的焦距为,则其离心率为__________.14.已知为抛物线上一个动点,定点,那么点到点的距离与点到抛物线的准线的距离之和的最小值是__________.15.李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为,(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为______元.16.若,其中都是实数,是虚数单位,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)当时,求:①展开式中的中间一项;②展开式中常数项的值;(2)若展开式中各项系数之和比各二项式系数之和大,求展开式中含项的系数.18.(12分)选修4-4:坐标系与参数方程直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2(sinθ+cosθ),直线l的参数方程为:(Ⅰ)写出圆C和直线l的普通方程;(Ⅱ)点P为圆C上动点,求点P到直线l的距离的最小值.19.(12分)某校从参加高二年级期末考试的学生中随机抽取了名学生,已知这名学生的历史成绩均不低于60分(满分为100分).现将这名学生的历史成绩分为四组:,,,,得到的频率分布直方图如图所示,其中历史成绩在内的有28名学生,将历史成绩在内定义为“优秀”,在内定义为“良好”.(Ⅰ)求实数的值及样本容量;(Ⅱ)根据历史成绩是否优秀,利用分层抽样的方法从这名学生中抽取5名,再从这5名学生中随机抽取2名,求这2名学生的历史成绩均优秀的概率;(Ⅲ)请将列联表补充完整,并判断是否有的把握认为历史成绩是否优秀与性别有关?男生女生合计优秀良好20合计60参考公式及数据:(其中).20.(12分)随着智能手机的普及,各类手机娱乐软件也如雨后春笋般涌现.如表中统计的是某手机娱乐软件自2018年8月初推出后至2019年4月底的月新注册用户数,记月份代码为(如对应于2018年8月份,对应于2018年9月份,…,对应于2019年4月份),月新注册用户数为(单位:百万人)(1)请依据上表的统计数据,判断月新注册用户与月份线性相关性的强弱;(2)求出月新注册用户关于月份的线性回归方程,并预测2019年5月份的新注册用户总数.参考数据:,,.回归直线的斜率和截距公式:,.相关系数(当时,认为两相关变量相关性很强.)注意:两问的计算结果均保留两位小数21.(12分)如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.22.(10分)已知函数,且曲线在点处的切线与直线垂直.(1)求函数的单调区间;(2)求的解集.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
求出函数的导函数【详解】∵,∴.由,解得,∴函数的单调递减区间是.故选D.【点睛】利用导数求函数f(x)的单调区间的一般步骤:①确定函数f(x)的定义域;②求导数;③在函数f(x)的定义域内解不等式和;④根据③的结果确定函数f(x)的单调区间.2、C【解析】
先由函数是奇函数求出,化原不等式为,再由函数的单调性,即可得出结果.【详解】因为为奇函数,若,则,所以不等式可化为,又在上单调递减,所以,解得.故选C【点睛】本题主要考查由函数的单调性与奇偶性解不等式,熟记函数基本性质即可,属于常考题型.3、C【解析】
解不等式得集合A,B,再由交集定义求解即可.【详解】由已知所以,故选C.【点睛】本题主要考查了集合的交集运算,属于基础题.4、B【解析】∵三个数,,的和为1,其平均数为∴三个数中至少有一个大于或等于假设,,都小于,则∴,,中至少有一个数不小于故选B.5、D【解析】
根据题意,由两个双曲线的方程计算出两个双曲线的焦点坐标,焦距,渐近线方程以及离心率,进而分析选项即可得到答案。【详解】根据题意,双曲线,其中,,则,则焦距,焦点坐标,渐近线方程为,离心率;双曲线,其标准方程为,其中,,则,则焦距,焦点坐标,渐近线为,离心率;据此依次分析选项:两个双曲线的焦距均为,故A正确;双曲线的焦点坐标,双曲线的焦点坐标,都在圆上,故B正确;渐近线方程均为,故C正确;双曲线的离心率,双曲线的离心率,离心率不相等,故选D【点睛】本题考查双曲线的基本性质,解题时要注意将双曲线的方程变为标准形式,属于基础题。6、C【解析】
利用求得周期,直接得出振幅为,在中令求得初相.【详解】依题意,,函数的振幅为,在中令求得初相为.故选C.【点睛】本小题主要考查中所表示的含义,考查三角函数周期的计算.属于基础题.其中表示的是振幅,是用来求周期的,即,要注意分母是含有绝对值的.称为相位,其中称为初相.还需要知道的量是频率,也即是频率是周期的倒数.7、D【解析】
利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【详解】y=x与曲线y=xS=0故选:D.【点睛】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属于基础题.8、B【解析】根据正态分布密度曲线的对称性可知,若,函数的对称轴是,所以,故选B.9、B【解析】
先求,再求.【详解】由已知,得:所以故选:B【点睛】本题考查了分段函数求值,属于基础题.10、C【解析】
根据条件所给的伸缩变换,反解出和的表达式,然后代入到中,从而得到曲线.【详解】因为圆,经过伸缩变换所以可得,代入圆得到整理得,即故选C项.【点睛】本题考查通过坐标伸缩变换求曲线方程,属于简单题.11、C【解析】
先计算抛物线和直线的交点,再用定积分计算面积.【详解】所围成的封闭图形的面积是:故答案为C【点睛】本题考查了定积分的应用,意在考查学生应用能力和计算能力.12、B【解析】
试题分析:将平面延展到平面如下图所示,由图可知,到平面的距离为定值.由于四边形为矩形,故三角形的面积为定值,进而三棱锥的体积为定值.故A,C,D选项为真命题,B为假命题.考点:空间点线面位置关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:已知双曲线的焦距为,故c=,然后根据焦点位置的不同由建立等式关系即可得出m,再求离心率即可.详解:由题可知:当m<2时,焦点在x轴上,,此时或者当m>3时,焦点在y轴,,此时,故综合得离心率为点睛:考查双曲线基本性质和标准方程,属于基础题.14、【解析】由抛物线的焦点为,根据抛物线的定义可知点到准线的距离等于点的焦点的距离,设点到抛物线的准线的距离为,所以,可得当三点共线时,点到点的距离与点到准线的距离之和最小,所以最小值为.点睛:本题主要考查了抛物线的定义及其标准方程的应用,解答中把抛物线上的点到准线的距离转化为到抛物线的焦点的距离是解答的关键,这是解答抛物线最值问题的一种常见转化手段,着重考查了学生的转化与化归和数形结合思想的应用.15、33000【解析】
设其中一家连锁店销售辆,则另一家销售辆,再列出总利润的表达式,是一个关于的二次函数,再利用二次函数的性质求出它的最大值即可.【详解】依题意,可设甲这一家销售了辆电动车,则乙这家销售了辆电动车,总总利润,所以,当时,取得最大值,且,故答案为.【点睛】本题考查函数模型的选择与应用,考查二次函数最值等基础知识,解题的关键在于确定函数的解析式,考查学生的应用能力,属于中等题.16、【解析】
首先进行复数的乘法运算,得到,的值,然后代入求解即可得到结果【详解】解得,故答案为【点睛】本题是一道关于考查复数概念的题目,熟练掌握复数的四则运算是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;②;(2).【解析】
(1)当时,利用二项式定理,二项展开式的通项公式,可求出特定的项以及常数项的值;(2)根据展开式中各项系数之和比各二项式系数之和大于求出的值,再利用二项展开式的通项公式,求出展开式中含项的系数.【详解】(1)①当时,的展开式共有项,展开式中的中间一项为;②展开式的通项公式为,令,得,所求常数项的值为;(2)若展开式中各项系数之和比各二项式系数之和大于,而展开式中各项系数之和为,各二项式系数之和为,则,即,解得.所以,展开式通项为,令,解得,因此,展开式中含项的系数为.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.18、(Ⅰ)(x-1)2+(y-1)2【解析】试题分析:(Ⅰ)由ρ2=x2+y2,x=ρcosθ,y=ρsinθ试题解析:(Ⅰ)由已知ρ=2(sinθ+cos所以x2+y2=2y+2x由x=2+t,y=-1+t,得y=-1+(x-2),所以直线l的普通方程为x-y-3=0(Ⅱ)由圆的几何性质知点P到直线l的距离的最小值为圆心C到直线l的距离减去圆的半径,令圆心C到直线l的距离为d,则d=|-1+1-3|所以最小值为32考点:极坐标方程化为直角坐标方程,参数方程化为普通方程,直线与圆位置关系19、(Ⅰ),;(Ⅱ);(Ⅲ)详见解析.【解析】
(Ⅰ)根据频率之和为1即可求出a的值,由历史成绩在内的有名学生即可求出的值;(Ⅱ)根据分层抽样具有按比例的性质得出良好的有2人,优秀有3人,通过列举法求解概率;(Ⅲ)补充列联表,算出,对比表格得出结论【详解】(Ⅰ)由题可得,解得,又历史成绩在内的有名学生,所以,解得.(Ⅱ)由题可得,这名学生中历史成绩良好的有名,所以抽取的名学生中历史成绩良好的有名,历史成绩优秀的有名,记历史成绩优秀的名学生为,,,历史成绩良好的名学生为,,从这名学生中随机抽取名,有,,,,,,,,,,共10种情况,其中这名学生的历史成绩均优秀的有,,,共种情况,所以这名学生的历史成绩均优秀的概率为.(Ⅲ)补充完整的列联表如下表所示:男生女生合计优秀204060良好202040合计4060100则的观测值,所以没有的把握认为历史成绩是否优秀与性别有关.【点睛】本题属于常规概率统计问题,属于每年必考题型,主要涉及知识点有:频率分布直方图:频率分布直方图中每个小矩形的面积为相应区间的频率,所以小正方形的面积之和为1;分层抽样:按比例;系统抽样:等距离;列联表:会列列联表,即判断两者是否有关联.20、(1)月新注册用户与月份的线性相关性很强;(2)10.06百万【解析】
(1)根据题目所给数据和相关系数计算公式,计算出相关系数,由此判断出“月新注册用户与月份的线性相关性很强”.(2)根据回归直线方程计算公式,计算出回归直线方程,并利用回归直线方程预测出2019年5月份的新注册用户总数.【详解】(1)由题意得,,,,,故.因为,所以月新注册用户与月份的线性相关性很强.(2)由(1),,所以回归方程为,令,得,即2019年5月份新注册用户预测值为10.06百万人.【点睛】本小题主要考查相关系数的计算,考查回归直线方程的计算,考查利用回归直线方程进行预测,考查运算求解能力,属于中档题.21、(1)见解析(2)【解析】分析:(1)通过取AD中点M,连接CM,利用,得到直角;再利用可得;而,DE平面ADEF,所以可得面面垂直.(2)以AD中点O建立空间直角坐标系,写出各点坐标,求得平面CAE与直线BE向量,根据直线与法向量的夹角即可求得直线与平面夹角的正弦值.详解:(1)证明:取的中点,连接,,,由四边形为平行四边形,可知,在中,有,∴.又,,∴平面,∵平面,∴.又,,∴平面.∵平面,∴平面平面.(2)解:由(1)知平面平面,如图,取的中点为,建立空间直角坐标系,,,,,,,.设平面的法向量,则,即,不妨令,得.故直线与平面所成角的正弦值.点睛:本题考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年婚前房产协议书
- 2024年携手共创:金矿采矿工程承包合约
- 2024服务礼仪个人培训工作总结(3篇)
- 2024年房屋拆迁安置劳务协议
- 专练02七道选择题主观原理题-2023年高考化学考前手感保温训练(全国卷)(原卷版)
- DB4113T 061-2024 水稻直播高产栽培技术规程
- DB4113T 035-2023 南阳艾病虫害综合防治技术规程
- DB4106T 79-2022 大棚韭菜生产技术规程
- DB4106T 60-2022 夏玉米倒伏等级气象指标
- DB4105T 197-2022 冬小麦晚播栽培技术规程
- 江苏省徐州市铜山区2023-2024学年九年级上学期期中英语试卷(含答案解析)
- 大数据处理服务合同
- 天津市河西区2023-2024学年九年级上学期期中英语试题
- 8.3 法治社会 课件高中政治统编版必修三政治与法治
- 河北省唐山市滦南县2024-2025学年七年级上学期10月期中数学试题
- GB/T 44653-2024六氟化硫(SF6)气体的现场循环再利用导则
- GB/T 44540-2024精细陶瓷陶瓷管材或环材弹性模量和弯曲强度的测定缺口环法
- 道路交通安全法律法规
- 2024年新北师大版数学一年级上册 第4单元 10以内数加与减 第9课时 可爱的企鹅 教学课件
- 外研版(2019) 选择性必修第四册 Unit 5 Into the Unknown Understanding ideas教案
- 中班健康课件《认识五官》
评论
0/150
提交评论