安阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第1页
安阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第2页
安阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第3页
安阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第4页
安阳市重点中学2022-2023学年数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,,若对,,使成立,则实数的取值范围是()A. B. C. D.2.已知曲线(,)的一条渐近线经过点,则该双曲线的离心率为()A.2 B. C.3 D.3.若函数在区间上的图象如图所示,则的值()A. B.C. D.4.实验女排和育才女排两队进行比赛,在一局比赛中实验女排获胜的概率是,没有平局.若采用三局两胜制,即先胜两局者获胜且比赛结束,则实验女排获胜的概率等于()A. B. C. D.5.已知的分布列为-101设,则的值为()A.4 B. C. D.16.下列有关统计知识的四个命题正确的是()A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位7.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A.0795 B.0780 C.0810 D.08158.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为A.0.24 B.0.26 C.0.288 D.0.2929.函数图象交点的横坐标所在区间是()A.(1,2) B.(2,3) C.(3,4) D.(1,5)10.8名学生和2位教师站成一排合影,2位教师不相邻的排法种数为()A. B. C. D.11.函数的定义域为R,,对任意的,都有成立,则不等式的解集为A. B. C. D.R12.如图所示十字路口来往的车辆,如果不允许回头,共有不同的行车路线有()A.24种 B.16种 C.12种 D.10种二、填空题:本题共4小题,每小题5分,共20分。13.设随机变量服从正态分布,若,则实数_______.14.一场晚会共有7个节目,要求第一个节目不能排,节目必须排在前4个,节目必须排在后3个,则有_______种不同的排法(用数字作答).15.已知(1-2x)2018=a16.五名毕业生分配到三个公司实习,每个公司至少一名毕业生,甲、乙两名毕业生不到同一个公司实习,则不同的分配方案有__种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(Ⅰ)当时,求函数的单调区间;(Ⅱ)当时,若函数在上有两个不同的零点,求的取值范围.18.(12分)(江苏省南京师大附中高三高考考前模拟考试数学试题)已知函数f(x)=lnx-ax+a,a∈R.(1)若a=1,求函数f(x)的极值;(2)若函数f(x)有两个零点,求a的范围;(3)对于曲线y=f(x)上的两个不同的点P(x1,f(x1)),Q(x2,f(x2)),记直线PQ的斜率为k,若y=f(x)的导函数为f′(x),证明:f′()<k.19.(12分)如图,平面,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.20.(12分)已知函数.(Ⅰ)当时,不等式有解,求实数的取值范围;(Ⅱ)当时,不等式恒成立,求的最大值.21.(12分)已知,,求;;;设,求和:.22.(10分)已知函数,.(Ⅰ)求函数的单调减区间;(Ⅱ)证明:;(Ⅲ)当时,恒成立,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由题意得“对,,使成立”等价于“”.∵,当且仅当时等号成立.∴.在中,由,解得.令,则,(其中).∴.由,解得,又,故,∴实数的取值范围是.选A.点睛:(1)对于求或型的最值问题利用绝对值三角不等式更方便.形如的函数只有最小值,形如的函数既有最大值又有最小值.(2)求函数的最值时要根据函数解析式的特点选择相应的方法,对于含有绝对值符号的函数求最值时,一般采用换元的方法进行,将问题转化为二次函数或三角函数的问题求解.2、A【解析】

将点代入双曲线的渐近线方程,由此求得的值,进而求得双曲线的离心率.【详解】双曲线的一条渐近线方程为,将点代入双曲线的渐近线方程得,,故,故选A.【点睛】本小题主要考查双曲线的渐近线方程,考查双曲线的离心率的求法,属于基础题.3、A【解析】

根据周期求,根据最值点坐标求【详解】因为,因为时,所以因为,所以,选A.【点睛】本题考查由图像求三角函数解析式,考查基本分析求解能力,属基础题.4、B【解析】试题分析:实验女排要获胜必须赢得其中两局,可以是1,2局,也可以是1,3局,也可以是2,3局.故获胜的概率为:,故选B.考点:独立事件概率计算.5、B【解析】

由的分布列,求出,再由,求得.【详解】,因为,所以.【点睛】本题考查随机变量的期望计算,对于两个随机变量,具有线性关系,直接利用公式能使运算更简洁.6、A【解析】分析:利用“卡方”的意义、相关指数的意义及回归分析的适用范围,逐一分析四个答案的真假,可得答案.详解:A.衡量两变量之间线性相关关系的相关系数越接近,说明两变量间线性关系越密切,正确;B.在回归分析中,可以用卡方来刻画回归的效果,越大,模型的拟合效果越差,错误对分类变量与的随机变量的观测值来说,越大,“与有关系”可信程度越大;故B错误;C.线性回归方程对应的直线至少经过其样本数据点中的一个点,错误,回归直线可能不经过其样本数据点中的任何一个点;D.线性回归方程中,变量每增加一个单位时,变量平均增加个单位,错误,由回归方程可知变量每增加一个单位时,变量平均增加个单位.故选A.点睛:本题考查回归分析的意义以及注意的问题.是对回归分析的思想、方法小结.要结合实例进行掌握.7、A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.8、C【解析】

首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率.【详解】因为摸一次球,是白球的概率是,不是白球的概率是,所以,故选C.【点睛】本题考查有放回问题的概率计算,难度一般.9、C【解析】

试题分析:设的零点在区间与图象交点的横坐标所在区间是,故选C.考点:曲线的交点.【方法点晴】本题考曲线的交点,涉及数形结合思想、函数与方程思想和转化化归思想,以及逻辑思维能力、等价转化能力、运算求解能力、综合程度高,属于较难题型.10、A【解析】

本题选用“插空法”,先让8名学生排列,再2位教师教师再8名学生之间的9个位置排列.【详解】先将8名学生排成一排的排法有种,再把2位教师插入8名学生之间的9个位置(包含头尾的位置),共有种排法,故2位教师不相邻的排法种数为种.故选A.【点睛】本题考查排列组合和计数原理,此题也可用间接法.特殊排列组合常用的方法有:1、插空法,2、捆绑法.11、A【解析】

把原不等式化为右侧为0的形式,令左侧为,利用导数得到的单调性,得解集.【详解】原不等式化为,令,则,对任意的,都有成立,恒成立,在R上递减,,的解集为,故选:A.【点睛】此题考查了利用导数研究单调性,解决不等式问题,难度适中.对于没有解析式或者表达式比较复杂的不等式,通常采取的方法是,研究函数的单调性和零点,进而得到解集。12、C【解析】根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有种,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由正态分布的对称性可知与关于对称,从而列方程求解即可.【详解】随机变量,其正态分布曲线关于对称,由于,所以与关于对称.,解得:.【点睛】本题考查正态分布曲线的对称性及概率的简单计算.14、1224【解析】

从G排在前4个和后3个两种情况来讨论,当排在前4个时,根据题的条件,求出有种排法,当排在后三个时,根据条件,求得有种排法,再根据分类计数原理求得结果.【详解】当排在前4个时,A也排在前四个,有种选择,此时D排在后三个有种选择,其余4人,共有种排法,此时共有种排法;当排在后三个时,D也排在后三个,A也排在前四个,此时共有种排法,所以共有种排法,故答案是:1224.【点睛】该题考查的是有关应用排列解决实际问题,涉及到的知识点有排列数,分类计数原理,分步计数原理,属于简单题目.15、3【解析】

根据题意,由二项式定理可得(1-2x)2018的展开式的通项,分析可知a1、a3、……a2017为负值,在【详解】根据题意,(1-2x)2018中,其展开式的通项为又由(1-2x)则a1、a3、则在(1-2x)2018中,令x=-1可得:又由a1、a3、则|a故答案为:32018【点睛】本题考查了二项式定理的应用,赋值法求项的系数和,属于中档题.16、1.【解析】

将5人按照1,1,3和2,2,1分组,分别得到总的分组数,再减去甲乙在同一组的分组数,然后在对所得到的的分组情况进行全排列,得到答案.【详解】先将五名毕业生分成3组,按照1,1,3的方式来分,有,其中甲乙在同一组的情况有,所以甲乙不在同一组的分法有种,按照2,2,1的方式来分,有,其中甲乙在同一组的情况有,所以甲乙不在同一组的分法有种,所以符合要求的分配方案有种,故答案为.【点睛】本题考查排列组合中的分组问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).【解析】

(Ⅰ)将代入函数的解析式,求出该函数的定义域与导数,解不等式和并与定义域取交集可分别得出该函数的单调递减区间和递增区间;(Ⅱ)求出函数的导数,分析函数在区间上的单调性,由题中条件得出,于此可解出实数的取值范围。【详解】(Ⅰ)函数的定义域为,当时,,,令,即,解得,令,即,解得,∴函数的单调递减区间为,单调递增区间为;(Ⅱ),,由得,,当时,,当时,,∴函数在上单调递减,在上单调递增,∵,,∴函数在上有两个不同的零点,只需,解得,∴的取值范围为.【点睛】本题考查利用导数求函数的单调区间,利用导数研究函数的零点个数问题,解题时常用导数研究函数的单调性、极值与最值,将零点个数转化为函数极值与最值的符号问题,若函数中含有单参数问题,可利用参变量分离思想求解,考查化归与转化思想,属于中等题。18、(1)见解析(2)(3)见解析【解析】分析:(1)求极值可先求导分析函数的单调区间从而确定极值点求极值;(2)由(1)可知当a≤0时,f(x)在(0,+∞)上单调增,不可能有两个零点;故只需讨论当a>0时的零点情况,当a>0时,函数有极大值,令(x>0),求导分析单调性结合零点定理进行证明即可;(3)由斜率计算公式得,而,将看成一个整体构造函数(),分析其最大值即可.解:(1),,当时,,在上单调递增,无极值;当时,,在上单调递增;,在上单调递减,函数有极大值,无极小值.(2)由(1)可知当a≤0时,f(x)在(0,+∞)上单调增,不可能有两个零点;当a>0时,函数有极大值,令(x>0),,,,在(0,1)上单调递减;,,在(1,+∞)上单调递增,函数有最小值.要使若函数有两个零点时,必须满足,下面证明时,函数有两个零点.因为,所以下面证明还有另一个零点.①当时,,,令(),,在上单调递减,,则,所以在上有零点,又在上单调递减,所以在上有惟一零点,从而有两个零点.②当时,,,易证,可得,所以在上有零点,又在上单调递减,所以在上有惟一零点,从而有两个零点.综上,的范围是.(3)证明:,,又,,不妨设0<x2<x1,t=,则t>1,则.令(),则,因此h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0.又0<x2<x1,所以x1-x2>0,所以f′()-k<0,即f′()<k.点睛:考查导数在函数的应用、零点定理、导数证明不等式,对复杂函数的正确求导和灵活转化为熟悉的语言理解是解导数难题的关键,属于难题.19、(Ⅰ)见证明;(Ⅱ)(Ⅲ)【解析】

首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行;(Ⅱ)分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可;(Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度.【详解】依题意,可以建立以A为原点,分别以的方向为x轴,y轴,z轴正方向的空间直角坐标系(如图),可得.设,则.(Ⅰ)依题意,是平面ADE的法向量,又,可得,又因为直线平面,所以平面.(Ⅱ)依题意,,设为平面BDE的法向量,则,即,不妨令z=1,可得,因此有.所以,直线与平面所成角的正弦值为.(Ⅲ)设为平面BDF的法向量,则,即.不妨令y=1,可得.由题意,有,解得.经检验,符合题意。所以,线段的长为.【点睛】本题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.20、(Ⅰ)(Ⅱ)4【解析】

(Ⅰ)首先判断函数是奇函数,再判断在和上单调递增,最后利用函数的性质化为简单不等式得到答案.(Ⅱ)先求出表达式,再利用换元法化简函数,求函数的最大值代入不等式解得的最大值.【详解】解:(Ⅰ)因为,所以函数是奇函数,又,所以在和上单调递增又,即,所以,即,解得或,故实数的取值范围为;(Ⅱ),令,∵,∴,∴,又时,∴在上为增函数,∴,∴的值域是∵恒成立,∴,,∴,的最大值为4.【点睛】本题考查了函数的奇偶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论