2023年云南省数学高二第二学期期末考试试题含解析_第1页
2023年云南省数学高二第二学期期末考试试题含解析_第2页
2023年云南省数学高二第二学期期末考试试题含解析_第3页
2023年云南省数学高二第二学期期末考试试题含解析_第4页
2023年云南省数学高二第二学期期末考试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.分配名工人去个不同的居民家里检查管道,要求名工人都分配出去,并且每名工人只去一个居民家,且每个居民家都要有人去检查,那么分配的方案共有()A.种 B.种 C.种 D.种2.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是()A.0.216 B.0.36 C.0.352 D.0.6483.设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为()A. B.C. D.4.已知双曲线的一条渐近线与轴所形成的锐角为,则双曲线的离心率为()A. B. C.2 D.或25.已知正项等差数列满足:,等比数列满足:,则()A.-1或2 B.0或2 C.2 D.16.某电子管正品率为,次品率为,现对该批电子管进行测试,那么在五次测试中恰有三次测到正品的概率是()A. B. C. D.7.函数的零点所在的区间是()A. B. C. D.8.“a>1”是“函数f(x)=ax-sinx是增函数”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.已知函数,如果函数在定义域为(0, +∞)只有一个极值点,则实数的取值范围是A. B. C. D.10.、两支篮球队进行比赛,约定先胜局者获得比赛的胜利,比赛随即结束.除第五局队获胜的概率是外,其余每局比赛队获胜的概率都是.假设各局比赛结果相互独立.则队以获得比赛胜利的概率为()A. B. C. D.11.如图,在菱形ABCD中,,线段AD,BD,BC的中点分别为E,F,K,连接EF,FK.现将绕对角线BD旋转,令二面角A-BD-C的平面角为,则在旋转过程中有()A. B. C. D.12.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为()A.3×2-2 B.2-4 C.3×2-10 D.2-8二、填空题:本题共4小题,每小题5分,共20分。13.已知复数,其中是虚数单位,则的模是__________.14.极坐标方程化成直角坐标方程是__________.15.若,且,则称集合是“兄弟集合”,在集合中的所有非空子集中任选一个集合,则该集合是“兄弟集合”的概率是__________16.若正数,满足,则的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)求下列函数的导数:(1);(2).18.(12分)某学校为了丰富学生的课余生活,以班级为单位组织学生开展古诗词背诵比赛,随机抽取一首,背诵正确加10分,背诵错误减10分,且背诵结果只有“正确”和“错误”两种.其中某班级学生背诵正确的概率,记该班级完成首背诵后的总得分为.(1)求且的概率;(2)记,求的分布列及数学期望.19.(12分)已知是函数()的一条对称轴,且的最小正周期为.(1)求值和的单调递增区间;(2)设角为的三个内角,对应边分别为,若,,求的取值范围.20.(12分)已知函数.(1)若,求的零点个数;(2)若,,证明:,.21.(12分)如图,在四面体中,在平面的射影为棱的中点,为棱的中点,过直线作一个平面与平面平行,且与交于点,已知,.(1)证明:为线段的中点(2)求平面与平面所成锐二面角的余弦值.22.(10分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:不等式对于任意恒成立.(1)若命题为真命题,求实数的取值范围;(2)若命题为真,为假,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据题意,分析可得,必有2名水暖工去同一居民家检查;分两步进行,①先从4名水暖工中抽取2人,②再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,由分步计数原理,计算可得答案.【详解】解:根据题意,分配4名水暖工去3个不同的居民家里,要求4名水暖工都分配出去,且每个居民家都要有人去检查;

则必有2名水暖工去同一居民家检查,

即要先从4名水暖工中抽取2人,有种方法,

再将这2人当做一个元素,与其他2人,共3个元素,分别分配到3个不同的居民家里,有种情况,

由分步计数原理,可得共种不同分配方案,

故选:C.【点睛】本题考查排列、组合的综合应用,注意一般顺序是先分组(组合),再排列,属于中档题.2、C【解析】

先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。【详解】记事件A:甲获胜,则事件A包含:①比赛两局,这两局甲赢;②比赛三局,前两局甲、乙各赢一局,第三局甲赢。由独立事件的概率乘法公式得PA故选:C.【点睛】本题考查独立事件的概率乘法公式的应用,解题前先要弄清事件所包含的基本情况,并逐一列举出来,并结合概率的乘法公式进行计算,考查计算能力,属于中等题。3、A【解析】

构造函数,则可判断,故是上的增函数,结合即可得出答案.【详解】解:设,则,∵,,∴,∴是上的增函数,又,∴的解集为,即不等式的解集为.故选A.【点睛】本题考查导数与函数单调性的关系,构造函数是解题的关键.4、C【解析】

转化条件得,再利用即可得解.【详解】由题意可知双曲线的渐近线为,又渐近线与轴所形成的锐角为,,双曲线离心率.故选:C.【点睛】本题考查了双曲线的性质,属于基础题.5、C【解析】分析:根据数列的递推关系,结合等差和等比数列的定义和性质求出数列的通项公式即可得到结论.详解:由,得,

∵是正项等差数列,

,∵是等比数列,则,即

故选:D.点睛:本题主要考查对数的基本运算,根据等差数列和等比数列的性质,求出数列的通项公式是解决本题的关键.6、D【解析】

根据二项分布独立重复试验的概率求出所求事件的概率。【详解】由题意可知,五次测试中恰有三次测到正品,则有两次测到次品,根据独立重复试验的概率公式可知,所求事件的概率为,故选:D。【点睛】本题考查独立重复试验概率的计算,主要考查学生对于事件基本属性的判断以及对公式的理解,考查运算求解能力,属于基础题。7、B【解析】分析:根据基本初等函数的性质,确定函数在上是增函数,且满足,,结合函数的零点判定定理可得函数的零点所在的区间.详解:由基本初等函数可知与均为在上是增函数,所以在上是增函数,又,根据函数零点的判定定理可得函数的零点所在的区间是.故选B.点睛:本题主要考查求函数的值,函数零点的判定定理,属于基础题.8、A【解析】

先由函数fx=ax-sinx为增函数,转化为f'【详解】当函数fx=ax-sinx为增函数,则则a≥cos因此,“a>1”是“函数fx=ax-sin【点睛】本题考查充分必要条件的判断,涉及参数的取值范围,一般要由两取值范围的包含关系来判断,具体如下:(1)A⊊B,则“x∈A”是“x∈B”的充分不必要条件;(2)A⊋B,则“x∈A”是“x∈B”的必要不充分条件;(3)A=B,则“x∈A”是“x∈B”的充要条件;(4)A⊄B,则则“x∈A”是“x∈B”的既不充分也不必要条件。9、C【解析】分析:求函数的导函数,并化简整理,结合函数在定义域为(0, +∞)只有一个极值点进行讨论即可.详解:函数的定义域为(0, +∞)①当时,恒成立,令,则,即在上单调递增,在上单调递减,则在处取得极小值,符合题意;②当时,时,又函数在定义域为(0, +∞)只有一个极值点,在处取得极值.从而或恒成立,构造函数,,设与相切的切点为,则切线方程为,因为切线过原点,则,解得,则切点为此时.由图可知:要使恒成立,则.综上所述:.故选:C.点睛:导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.10、A【解析】分析:若“队以胜利”,则前四局、各胜两局,第五局胜利,利用独立事件同时发生的概率公式可得结果.详解:若“队以胜利”,则前四局、各胜两局,第五局胜利,因为各局比赛结果相互独立,所以队以获得比赛胜利的概率为,故选A.点睛:本题主要考查阅读能力,独立事件同时发生的概率公式,意在考查利用所学知识解决实际问题的能力,属于中档题.11、B【解析】

首先根据旋转前后的几何体,表示和,转化为在两个有公共底边的等腰三角形比较顶角的问题,还需考虑和两种特殊情况.【详解】如图,绕旋转形成以圆为底面的两个圆锥,(为圆心,为半径,为的中点),,,当且时,与等腰中,为公共边,,,.当时,,当时,,综上,。C.D选项比较与的大小关系,如图即比较与的大小关系,根据特殊值验证:又当时,,当时,,都不正确.故选B.【点睛】本题考查了二面角的相关知识,考查空间想象能力,难度较大,本题的难点是在动态的旋转过程中,如何转化和,从而达到比较的目的,或考查和两种特殊情况,可快速排除选项.12、C【解析】E(X)=np=6,D(X)=np(1-p)=3,∴p=,n=12,则P(X=1)=·()1·()11=3×2-10.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:分子分母同时乘以,化简整理,得出,再得模。详解:,所以。点睛:复数的除法运算公式。14、【解析】分析:由极坐标方程可得或,化为直角坐标方程即可.详解:由极坐标方程可得或,,即或即答案为或.点睛:本题考查极坐标与直角坐标的互化,属基础题.15、【解析】

首先确定非空子集的个数;根据“兄弟集合”的定义,可列举出所有“兄弟集合”,根据古典概型概率公式求得结果.【详解】集合的非空子集共有:个集合的非空子集中,为“兄弟集合”的有:,,,,,,,共个根据古典概型可知,所求概率本题正确结果:【点睛】本题考查古典概型概率问题的求解,关键是能够根据“兄弟集合”的定义确定符合题意的集合个数.16、【解析】

利用基本不等式将变形为即可求得的取值范围.【详解】∵,,∴,即,解得,即,当且仅当时,等号成立.故答案为:.【点睛】本题主要考查利用基本不等式求代数式的取值范围问题,属常规考题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)利用积的导数和和差的导数法则求导.(2)利用商的导数和积的导数的法则求导.【详解】(1)f'(x)=(1+sinx)'(1-4x)+(1+sinx)(1-4x)'=cosx(1-4x)-4(1+sinx)=cosx-4xcosx-4-4sinx.(2)f(x)=-2x=1--2x,则f'(x)=-2xln2.【点睛】本题主要考查对函数求导,意在考查学生对该知识的掌握水平和分析推理能力.18、(1);(2)分布列见解析,.【解析】

(1)由知,背诵6首,正确4首,错误2首,又,所以第一首一定背诵正确,由此求出对应的概率;(2)根据题意确定的取值,计算相对应的概率值,写出的分布列,求出数学期望.【详解】(1)当S6=20时,即背诵6首后,正确的有4首,错误的有2首.由Si≥0(i=1,2,3)可知,若第一首和第二首背诵正确,则其余4首可任意背诵正确2首;若第一首背诵正确,第二首背诵错误,第三首背诵正确,则其余3首可任意背诵正确2首.则所求的概率.(2)由题意知ξ=|S5|的所有可能的取值为10,30,50,又,,,,∴ξ的分布列为.【点睛】本题主要考查离散型随机变量的分布列与数学期望的计算,意在考查学生的逻辑推理能力与数学计算能力.19、(1),(2)【解析】

(1)由三角函数的辅助角公式,得,求得,又由为对称轴,求得,进而得到则,得出函数的解析式,即可求解函数的单调递增区间;(2)由(1)和,求得,在利用正弦定理,化简得,利用角的范围,即可求解答案.【详解】(1),所以.因为为对称轴,所以,即,则,则,所以.令,所以的单调递增区间为.(2),所以,则,由正弦定理得,为外接圆半径,所以,∵,,.【点睛】本题主要考查了三角函数的综合应用,以及正弦定理的应用,其中解答中根据题设条件求解函数的解析式,熟记三角函数的恒等变换和三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.20、(1)(2)见解析【解析】

(1)将a的值代入f(x),再求导得,在定义域内讨论函数单调性,再由函数的最小值正负来判断它的零点个数;(2)把a的值代入f(x),将整理化简为,即证明该不等式在上恒成立,构造新的函数,利用导数可知其在定义域上的最小值,构造函数,由导数可知其定义域上的最大值,二者比较大小,即得证。【详解】(1)解:因为,所以.令,得或;令,得,所以在,上单调递增,在上单调递减,而,,,所以的零点个数为1.(2)证明:因为,从而.又因为,所以要证,恒成立,即证,恒成立,即证,恒成立.设,则,当时,,单调递增;当时,,单调递减.所以.设,则,当时,,单调递增;当时,,单调递减.所以,所以,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论