数与代数知识点总结_第1页
数与代数知识点总结_第2页
数与代数知识点总结_第3页
数与代数知识点总结_第4页
数与代数知识点总结_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数与代数知识点总结数与代数学问点总结1

1、像0,1,2,3,4,5,6……这样的数是自然数。最小的自然数是0,没有最大的自然数,全部的自然数都是整数,整数不全是自然数。

2、像-3,-2,-1,0,1,2,3,……这样的数是整数。(注:整数包括自然数)

3、倍数和因数:倍数和因数是相互依存的。如:4×5=20,就可以说20是4和5的倍数,4和5是20的因数。

推断题或填空题易出。如:4×5=20,4是因数,20是倍数,这是错误的。

一个数的倍数有很多个,倍数的个数是无限的,而因数的个数是有限的。

一个数最大的因数和最小的倍数都是它本身。

4、找因数:找一个数的因数,一对一对有序地找,就不会重复和遗漏。一个数最小的因数是1,最大的因数是它本身。一个数因数的个数是有限的。1的因数只有1个,就是1。

如:36的因数有:1,36,2,18,3,12,4,9,6

5、找倍数:从1倍开头有序地找,一个数没有最大的倍数,最小的倍数是它本身。

例:一个数最大的因数与最小的倍数是18,这个数是(18)。

6、奇数和偶数:

是2的倍数的数叫偶数,特征是:个位上是0,2,4,6,8。如:2,4,6,8等等。

不是2的倍数的数叫奇数。特征是:个位上是1,3,5,7,9。如:1,3,33,99等等。

7、质数:一个数只有1和它本身两个因数,这个数叫质数。如:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97等。

8、合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。合数至少有3个因数。如:4,6,8,9,10,12,14,15,16,18,20等。

留意:1既不是质数也不是合数。

例:(1)最小的质数是2,最小的合数是4,最小的奇数1,最小的偶数是0。

(2)1、3、5、7、19、29、49、65、51当中是质数的有(3,5,7,19,29)。

(3)两个都是质数的连续自然数是:2,3。既是偶数又是质数的是:2。两个质数的乘积是合数。

例题:下面几个推断题都是错误的。

(1)一个自然数不是质数就是合数。(1既不是质数也不是合数)

(2)全部的奇数都是质数。

(3)全部的偶数都是合数。

9、按一个数的因数分,自然数可以分为:质数、合数和1三类。

按一个数的奇偶性来分,自然数可以分为(奇数和偶数)两类。(0是最小的偶数,暂不讨论)

10、(翻杯子、渡船、开关灯……)经过偶数次变化,与开头状态相同;经过奇数次变化,与开头状态相反。

11、2,3,5的倍数特征:

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数都是5的倍数。

各个数位上数字之和是3的倍数,这个数就是3的倍数。是9的倍数的数肯定是3的倍数,但3的倍数不肯定是9的倍数。

12、数的奇偶性:

偶数+偶数=偶数奇数+奇数=偶数

偶数+奇数=奇数

13、分数单位:把单位“1”平均分成若干份,表示这样的1份的分数叫分数单位。十八分之五的分数单位是十八分之一。

14、分子小于分母的分数是真分数,真分数﹤1

分子大于或等于分母的分数是假分数,假分数≥1

带分数是由整数和一个真分数组成,带分数>1

假分数化成带分数的方法:分子除以分母,商为分数的整数部分,分母不变,余数为分子。

带分数化成假分数的方法:分母不变,假分数的分母乘整数部分加原分子作分子。

整数化成假分数:分母乘以整数做分子。例:1等于2除以2。

数与代数学问点总结2

(一)数的熟悉

整数【正数、0、负数】

一、一个物体也没有,用0表示。0和1、2、3……都是自然数。自然数是整数。

二、最小的一位数是1,最小的自然数是0。

三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。“+4”读作正四。“-4”读作负四。+4也可以写成4。

四、像+4、19、+8844这样的数都是正数。像-4、-11、-7、-155这样的数都是负数。

五、0既不是正数,也不是负数。正数都大于0,负数都小于0。

六、通常状况下,比海平面高用正数表示,比海平面低用负数表示。

七、通常状况下,盈利用正数表示,亏损用负数表示。

八、通常状况下,上车人数用正数表示,下车人数用负数表示。

九、通常状况下,收入用正数表示,支出用负数表示。

十、通常状况下,上升用正数表示,下降用负数表示。

小数【有限小数、无限小数】

一、分母是10、100、1000……的分数都可以用小数表示。一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几……

二、整数和小数都是根据十进制计数法写出的数,个、十、百……以及非常之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。数位是根据肯定的挨次排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、依据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分非常位上的数,百分位上的数,千分位上的数,从左往右,假如哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2依据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

九、整数和小数的数位挨次表:

分数【真分数、假分数】

一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。

二、两个数相除,它们的商可以用分数表示。即:a÷b=b/a(b≠0)

三、小数和分数的意义可以看出,小数实际上就是分母是10、100、1000…的分数。

四、分数可以分为真分数和假分数。

五、分子小于分母的`分数叫做真分数。真分数小于1。

六、分子大于或等于分母的分数叫做假分数。假分数大于或等于1。

七、分子和分母只有公因数1的分数叫做最简分数。

八、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。

九、小数的性质和分数的基本性质全都的,应用分数的基本性质,可以通分和约分。

百分数【税率、利息、折扣、成数】

一、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比,百分数通常用“%”表示。

二、分数与百分数比较:

不同点

相同点

分数

可以表示详细数量,可以有单位名称

表示两个数之间的关系

百分数

不行以表示详细数量,不行以有单位名称

三、分数、小数、百分数的互化。

(1)把分数化成小数,用分数的分子除以分母。

(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。

(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。

(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。

(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。

(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。

四、熟记常用三数的互化。

五、

1、出勤率表示出勤人数占总人数的百分之几。

2、合格率表示合格件数占总件数的百分之几。

3、成活率表示成活棵数占总棵数的百分之几。

六、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。

七、1、多的÷“1”=多百分之几2、少的÷“1”=少百分之几

八、应得利息是税前利息,实得利息是税后利息。

九、利息=本金×利率×时间

十、应得利息-利息税=实得利息

十一、几折表示非常之几,表示百分之几十;几几折表示非常之几点几,表示百分之几十几。

十二、

1、原价×折扣=现价

2、现价÷原价=折扣

3、现价÷折扣=原价

十三、几成表示非常之几表示百分之几十;几成几表示非常之几点几,表示百分之几十几。

数与代数学问点总结3

一、一次函数图象y=kx+b

一次函数的图象可以由k、b的正负来打算:

k大于零是一撇(由左下至右上,增函数)

k小于零是一捺(由右上至左下,减函数)

b等于零必过原点;

b大于零交点(指图象与y轴的交点)在上方(指x轴上方)

b小于零交点(指图象与y轴的交点)在下方(指x轴下方)

其图象经过(0,b)和(-b/k,0)这两点(两点就可以打算一条直线),且(0,b)在y轴上,(-b/k,0)在x轴上。

b的数值就是一次函数在y轴上的截距(不是距离,有正、负、零之分)。

二、不等式组的解集

1、步骤:去分母(后分子应加上括号)、去括号、移项、合并同类项、系数化为1。

2、解一元一次不等式组时,先求出各个不等式的解集,然后按不等式组解集的四种类型所反映的规律,写出不等式组的解集:不等式组解集的确定方法,若a

A的解集是解集小小的取小

B的解集是解集大大的取大

C的解集是解集大小的小大的取中间

D的解集是空集解集大大的小小的无解

另需留意等于的问题。

三、零的描述

1、零既不是正数也不是负数,是介于正数和负数之间的数。零是自然数,是整数,是偶数。

A、零是表示具有相反意义的量的基准数。

B、零是判定正、负数的界限。

C、在一切非负数中有一个最小值是0;在一切非正数中有一个最大值是0。

数与代数学问点总结4

一、代数式的定义:

用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。

留意:

(1)单个数字与字母也是代数式;

(2)代数式与公式、等式的区分是代数式中不含等号,而公式和等式中都含有等号;

(3)代数式可按运算关系和运算结果两种状况理解。

三、整式:单项式与多项式统称为整式。

1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中全部字母的指数的和叫做单项式的次数。特殊地,单独一个数或者一个字母也是单项式。

2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。

四、升(降)幂排列:

把一个多项式按某一个字母的指数从小到大(或从大到小)的挨次排列起来,叫做把多项式按这个字母升(降)幂排列。

五、代数式书写要求:

1.代数式中消失的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;

2.数字与字母相乘、单项式与多项式相乘时,一般根据先写数字,再写单项式,最终写多项式的书写挨次、如式子(a+b)·2·a应写成2a(a+b);

3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;

4.在代数式中消失除法运算时,按分数的写法来写;

5.在一些实际问题中,有时表示数量的代数式有单位名称,假如代数式是积或商的形式,则单位直接写在式子后面;假如代数式是和或差的形式,则必需先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。

六、系数与次数

单项式的系数和次数,多项式的项数和次数。

1、单项式的系数:单项式中的数字因数叫做单项式的系数。

留意:

(1)单项式的系数包括它前面的符号;

(2)若单项式的系数是1”或-1“时,1通常省略不写,但“-”号不能省略。

2.单项式的次数:单项式中全部字母的指数和叫做单项式的次数。

留意:

(1)单项式的次数是它含有的全部字母的指数和,只与字母的指数有关,与其系数无关;

(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,肯定不要遗忘被省略的1。

3、多项式的次数:多项式中次数最高的项的次数就是多项式的次数、

4、多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。

七、列代数式:

用含有数、字母和运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论