版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移个单位,则所得函数图像对应的解析式为()A. B.C. D.2.命题“任意”为真命题的一个充分不必要条件是()A. B. C. D.3.函数在点处的切线方程为()A. B. C. D.4.在一次数学单元测验中,甲、乙、丙、丁四名考生只有一名获得了满分.这四名考生的对话如下,甲:我没考满分;乙:丙考了满分;丙:丁考了满分;丁:我没考满分.其中只有一名考生说的是真话,则考得满分的考生是()A.甲 B.乙 C.丙 D.丁5.设函数,记,若函数至少存在一个零点,则实数的取值范围是()A. B.C. D.6.设随机变量ξ~N(μ,σ2),函数f(x)=x2+4x+ξ没有零点的概率是0.5,则μ等于()A.1 B.4 C.2 D.不能确定7.(2018年天津卷文)设变量x,y满足约束条件则目标函数的最大值为A.6 B.19 C.21 D.458.设集合,,则()A. B. C. D.9.一张储蓄卡的密码共有位数字,每位数字都可以是中的任意一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,任意按最后一位数字,则不超过次就按对的概率为()A. B. C. D.10.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2 B.n=4,p=0.4 C.n=5,p=0.32 D.n=7,p=0.4511.已知,,,若,则()A.2 B. C. D.512.在上可导的函数的图像如图所示,则关于的不等式的解集为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数的导函数为,且满足,则__________.14.已知集合,,则__________.15.若,则的值是________16.已知,命题:,,命题:,,若命题为真命题,则实数的取值范围是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(I)求曲线的直角坐标方程;(II)求直线与曲线交点的直角坐标.18.(12分)完成下列各题.(1)求的展开式;(2)化简.19.(12分)已知等差数列的公差为,等比数列的公比为,若,且,,,成等差数列.(1)求数列,的通项公式;(2)记,数列的前项和为,数列的前项和为,若对任意正整数,恒成立,求实数的取值范围.20.(12分)已知函数.(1)求函数的单调区间;(2)若恒成立,试确定实数的取值范围.21.(12分)已知函数.(1)当时,求函数的单调区间;(2)函数在上是减函数,求实数a的取值范围.22.(10分)设函数.(1)求的单调区间;(2)求使对恒成立的的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得,再将所得图像向左平移个单位,得,选B.2、C【解析】试题分析:对此任意性问题转化为恒成立,当,即,,若是原命题为真命题的一个充分不必要条件,那应是的真子集,故选C.考点:1.集合;2.充分必要条件.3、D【解析】分析:由题意,求得,得到,利用直线的点斜式方程,即可求解切线的方程;详解:由题意,函数,则,所以,即切线的斜率为,又,所以切线过点,所以切线的方程为,即,故选D.点睛:本题主要考查了利用导数的几何意义求解切线的方程问题,其中熟记导数的几何意义的应用是解答的关键,着重考查了推理与运算能力.4、A【解析】
分析四人说的话,由丙、丁两人一定是一真一假,分丙为真与丁为真进行推理判断可得答案.【详解】解:分析四人说的话,由丙、丁两人一定是一真一假,若丙是真话,则甲也是真话,矛盾;若丁是真话,此时甲、乙、丙都是假话,甲考了满分,故选:A.【点睛】本题主要考查合理推理与演绎推理,由丙、丁两人一定是一真一假进行讨论是解题的关键.5、A【解析】试题分析:函数定义域是,,,设,则,设,则,,易知,即也即在上恒成立,所以在上单调递增,又,因此是的唯一零点,当时,,当时,,所以在上递减,在上递增,,函数至少有一个零点,则,.故选B.考点:函数的零点,用导数研究函数的性质.【名师点睛】本题考查函数的零点的知识,考查导数的综合应用,题意只要函数的最小值不大于0,因此要确定的正负与零点,又要对求导,得,此时再研究其分子,于是又一次求导,最终确定出函数的最小值,本题解题时多次求导,考查了学生的分析问题与解决问题的能力,难度较大.6、B【解析】试题分析:由题中条件:“函数f(x)=x2+4x+ξ没有零点”可得ξ>4,结合正态分布的图象的对称性可得μ值.解:函数f(x)=x2+4x+ξ没有零点,即二次方程x2+4x+ξ=0无实根得ξ>4,∵函数f(x)=x2+4x+ξ没有零点的概率是0.5,∴P(ξ>4)=0.5,由正态曲线的对称性知μ=4,故选B.考点:正态分布曲线的特点及曲线所表示的意义.7、C【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.8、D【解析】函数有意义,则,函数的值域是,即.本题选择D选项.9、B【解析】
利用互斥事件概率加法公式和相互独立事件概率乘法公式直接求解,即可求得答案.【详解】设第次按对密码为事件第一次按对第一次按错,第二次按对第一次按错,第二次按错,第三次按对事件,事件,事件是互斥,任意按最后一位数字,则不超过次就按对的概率由概率的加法公式得:故选:C.【点睛】本题考查概率的求法,考查互斥事件概率加法公式和相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.10、A【解析】列方程组,解得.11、A【解析】
先求出的坐标,再利用共线向量的坐标关系式可求的值.【详解】,因,故,故.故选A.【点睛】如果,那么:(1)若,则;(2)若,则;12、B【解析】
分别讨论三种情况,然后求并集得到答案.【详解】当时:函数单调递增,根据图形知:或当时:不成立当时:函数单调递减根据图形知:综上所述:故答案选B【点睛】本题考查了根据图像判断函数的单调性,意在考查学生的读图能力.二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】分析:先求导数,解得,代入解得.详解:因为,所以所以因此,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.14、【解析】分析:直接利用交集的定义求解即可.详解:因为集合,,所以由交集的定义可得,故答案为点睛:本题考查集合的交集的定义,意在考查对基本运算的掌握情况,属于简单题.15、2【解析】
利用赋值法,分别令代入式子即可求得的值.【详解】因为令,代入可得令,代入可得两式相减可得,即故答案为:2【点睛】本题考查了二项式定理的简单应用,赋值法求二项式系数的值是常用方法,属于基础题.16、或【解析】
根据不等式恒成立化简命题为,根据一元二次方程有解化简命题为或,再根据且命题的性质可得结果.【详解】若命题:“,”为真;则,解得:,若命题:“,”为真,则,解得:或,若命题“”是真命题,则,或,故答案为或【点睛】解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(II).【解析】
(I)曲线C的极坐标方程为两边同乘,利用极坐标与直角坐标互化公式可得直角坐标方程.(II)将代入中,得的二次方程,解得则可求解【详解】(I)将两边同乘得,,曲线的直角坐标方程为:.(II)将代入中,得,解得,直线与曲线交点的直角坐标为.【点睛】本题考查了极坐标与直角坐标方程的互化、参数方程化为普通方程及其应用、直线与抛物线相交问题,考查的几何意义,考查了推理能力与计算能力,属于中档题.18、(1);(2)【解析】分析:(1)根据二项定理,即可得到二项时的展开式;(2)根据二项式定理的逆用,即可得到相应的二项式.详解:(1).(2)原式.点睛:本题主要考查了二项式定理的应用,其中熟记二项式定理的展开式的结果形式是解答此类问题的关键,着重考查了推理与计算能力.19、(1),(2)【解析】
(1)分别根据,和成等差数列,分别表示为和的方程组,求出首项,即得通项公式;(2)根据(1)的结果可求得,并且求出,利用裂项相消法求和,转化为,恒成立,转化为求数列的最值.【详解】解:(1)因为,,成等差数列,所以①,又因为,,成等差数列,所以,得②,由①②得,.所以,.(2),...令,则,则,所以,当时,,当时,所以的最小值为.又恒成立,所以,.【点睛】本题考查了数列通项的求法,和求数列的前项和的方法,以及和函数结合考查数列的最值,尤其在考查数列最值时,需先判断函数的单调性,判断的正负,根据单调性求函数的最值.20、(1)函数的递增区间为,函数的递减区间为;(2)【解析】试题分析:(1)由已知得x>1,,对k分类讨论,由此利用导数性质能求出函数f(x)的单调区间.(2)由得,即求的最大值.试题解析:解:(1)函数的定义域为,,当时,,函数的递增区间为,当时,,当时,,当时,,所以函数的递增区间为,函数的递减区间为.(2)由得,令,则,当时,,当时,,所以的最大值为,故.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.21、(1)减区间为(0,),(1,+∞),增区间为(,1);(2)【解析】分析:(1)求导得,得到减区间为(0,),(1,+∞),增区间为(,1);(2),在x∈(2,4)上恒成立,等价于上恒成立,即可求出实数a的取值范围详解:(1)函数的定义域为(0,+∞),在区间(0,),(1,+∞)上f′(x)<0.函数为减函数;在区间(,1)上f′(x)>0.函数为增函数.(2)函数在(2,4)上是减函数,则,在x∈(2,4)上恒成立.实数a的取值范围点睛:本题考查导数的综合应用.导数的基本应用就是判断函数的单调性,,单调递增,,单调递减.当函数含参时,则一般采取分离参数法,转化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学一年级20以内口算练习题
- 水电安装合同范本6篇
- 小学数学一年级下册20以内口算达标练习
- 小学数学小数乘除法计算题综合训练苏教版五年级
- 公司商业工作计划书6篇
- 《战略思考选对方向》课件
- 公路工程施工总结报告标准
- 高考新课标语文模拟试卷系列之68
- 《求真务实开拓创新》课件
- 《康师傅促销评估》课件
- 《古兰》中文译文版
- 宣传广告彩页制作合同
- 除湿机说明书
- 征信知识测试题及答案
- 理想系列一体化速印机故障代码
- 现代电路技术——故障检测D算法
- 检验科各专业组上岗轮岗培训考核制度全6页
- 钣金与成型 其它典型成形
- 工程停止点检查管理(共17页)
- 爬架安装检查验收记录表1529
- 2021年全国烟草工作会议上的报告
评论
0/150
提交评论