




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.542.已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶,甲车、乙车的速度曲线分别为和(如图所示),那么对于图中给定的和,下列判断中一定正确的是()A.在时刻,两车的位置相同B.时刻后,甲车在乙车后面C.在时刻,两车的位置相同D.在时刻,甲车在乙车前面3.已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.54.若双曲线的一条渐近线被圆所截得的弦长为2,则双曲线的离心率为()A. B.2 C. D.5.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”6.在极坐标系中,点与之间的距离为(
)A.1 B.2 C.3 D.47.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,e2i表示的复数在复平面中对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函数在区间内没有极值点,则的取值范围为A. B. C. D.9.在区间上的最大值是()A. B. C. D.10.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.11.设集合,.若,则()A. B. C. D.12.定义在上的奇函数满足,且当时,,则()A. B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集是_______.14.已知全集,集合,,若,则实数的取值范围是______.15.展开式中,项的系数为______________16.在平面直角坐标系xOy中,动点到两坐标轴的距离之和等于它到定点的距离,记点P的轨迹为,给出下列四个结论:①关于原点对称;②关于直线对称;③直线与有无数个公共点;④在第一象限内,与x轴和y轴所围成的封闭图形的面积小于.其中正确的结论是________.(写出所有正确结论的序号)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的图象经过点,且在点处的切线方程为.(1)求函数的解析式;(2)求函数的单调区间18.(12分)已知与之间的数据如下表:(1)求关于的线性回归方程;(2)完成下面的残差表:并判断(1)中线性回归方程的回归效果是否良好(若,则认为回归效果良好).附:,,,.19.(12分)选修4-5:不等式选讲已知函数的最大值为.(1)求的值;(2)若,,求的最大值.20.(12分)大型水果超市每天以元/千克的价格从水果基地购进若干水果,然后以元/千克的价格出售,若有剩余,则将剩余的水果以元/千克的价格退回水果基地,为了确定进货数量,该超市记录了水果最近天的日需求量(单位:千克),整理得下表:日需求量频数以天记录的各日需求量的频率代替各日需求量的概率.(1)求该超市水果日需求量(单位:千克)的分布列;(2)若该超市一天购进水果千克,记超市当天水果获得的利润为(单位:元),求的分布列及其数学期望.21.(12分)在有阳光时,一根长为3米的旗轩垂直于水平地面,它的影长为米,同时将一个半径为3米的球放在这块水平地面上,如图所示,求球的阴影部分的面积(结果用无理数表示).22.(10分)已知函数.(1)若函数在上是减函数,求实数的取值范围;(2)若函数在上存在两个极值点,,且,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:根据题意,按甲乙的分工情况不同分两种情况讨论,①甲乙一起参加除了开车的三项工作之一,②甲乙不同时参加一项工作;分别由排列、组合公式计算其情况数目,进而由分类计数的加法公式,计算可得答案.解:根据题意,分情况讨论,①甲乙一起参加除了开车的三项工作之一:C31×A33=18种;②甲乙不同时参加一项工作,进而又分为2种小情况;1°丙、丁、戌三人中有两人承担同一份工作,有A32×C32×A22=3×2×3×2=36种;2°甲或乙与丙、丁、戌三人中的一人承担同一份工作:A32×C31×C21×A22=72种;由分类计数原理,可得共有18+36+72=126种,故选B.考点:排列、组合的实际应用.2、D【解析】
根据图象可知在前,甲车的速度高于乙车的速度;根据路程与速度和时间的关系可得到甲车的路程多于乙车的路程,从而可知甲车在乙车前面.【详解】由图象可知,在时刻前,甲车的速度高于乙车的速度由路程可知,甲车走的路程多于乙车走的路程在时刻,甲车在乙车前面本题正确选项:【点睛】本题考查函数图象的应用,关键是能够准确选取临界状态,属于基础题.3、A【解析】
因为抛物线的焦点是,所以双曲线的半焦距,,,所以一条渐近线方程为,即,,故选A.【点考点定位】本题主要考查双曲线、抛物线的标准方程、几何性质、点和直线的位置关系,考查推理论证能力、逻辑思维能力、计算求解能力、数形结合思想、转化化归思想4、B【解析】
写出双曲线的渐近线方程,由圆的方程得到圆心坐标与半径,结合点到直线的距离公式与垂径定理列式求解.【详解】解:双曲线的渐近线方程为,由对称性,不妨取,即.圆的圆心坐标为,半径为,则圆心到渐近线的距离,,解得.故选:B.【点睛】本题考查双曲线的简单性质,考查直线与圆位置关系的应用,属于中档题.5、B【解析】
通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.6、B【解析】
可先求出判断为等边三角形即可得到答案.【详解】解析:由与,知,所以为等边三角形,因此【点睛】本题主要考查极坐标点间的距离,意在考查学生的转化能力及计算能力,难度不大.7、B【解析】
由题意得,得到复数在复平面内对应的点,即可作出解答.【详解】由题意得,e2i=cos2+isin2,∴复数在复平面内对应的点为(cos2,sin2).∵2∈,∴cos2∈(-1,0),sin2∈(0,1),∴e2i表示的复数在复平面中对应的点位于第二象限,故选B.【点睛】本题主要考查了复数坐标的表示,属于基础题.8、D【解析】
利用三角恒等变换化简函数的解析式,再根据正弦函数的极值点,可得2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z,由此求得ω的取值范围.【详解】∵函数=sin2ωx﹣2•1=sin2ωxcos2ωx+1=2sin(2ωx)+1在区间(π,2π)内没有极值点,∴2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z.解得kω,或kω,令k=0,可得ω∈故选D.【点睛】本题主要考查三角恒等变换,正弦函数的极值点,属于中档题.9、D【解析】
对求导,判断函数在区间上的单调性,即可求出最大值。【详解】所以在单调递增,在单调递减,故选D【点睛】本题考查利用导函数求函数的最值,属于基础题。10、C【解析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.11、C【解析】∵集合,,∴是方程的解,即∴∴,故选C12、D【解析】
由等式可得函数的周期,得到,再由奇函数的性质得,根据解析式求出,从而得到的值.【详解】因为,所以的周期,所以,故选D.【点睛】由等式得函数的周期,其理由是:为函数自变量的一个取值,为函数自变量的另一个取值,这两个自变量的差始终为4,函数值始终相等,所以函数的周期为4.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
直接去掉绝对值即可得解.【详解】由去绝对值可得即,故不等式的解集是.【点睛】本题考查了绝对值不等式的解法,属于基础题.14、【解析】
求出集合A的补集,结合,即可确定实数的取值范围.【详解】与B必有公共元素即【点睛】本题主要考查了集合间的交集和补集运算,属于基础题.15、【解析】∴二项式展开式中,含项为∴它的系数为1.故答案为1.16、②③④【解析】
由题意可得当xy≥0,可得xy+x+y﹣1=0,当xy<0时,﹣xy+x+y﹣1=0,画出P的轨迹图形,由图形可得不关于原点对称,关于直线y=x对称,且直线y=1与曲线有无数个公共点;曲线在第一象限与坐标轴围成的封闭图形的面积小于边长为1的等腰三角形的面积,即可得到正确结论个数.【详解】解:动点P(x,y)到两坐标轴的距离之和等于它到定点A(1,1)的距离,可得|x|+|y|,平方化为|xy|+x+y﹣1=0,当xy≥0,可得xy+x+y﹣1=0,即y,即y=﹣1,当xy<0时,﹣xy+x+y﹣1=0,即有(1﹣x)y=1﹣x.画出动点P的轨迹为图:①Γ关于原点对称,不正确;②Γ关于直线y=x对称,正确;③直线y=1与Γ有无数个公共点,正确;④在第一象限内,Γ与x轴和y轴所围成的封闭图形的面积小于,正确.故答案为:②③④.【点睛】本题考查曲线的方程和图形,考查曲线的性质,画出图形是解题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)=x2﹣2x1﹣2x+1;(1)f(x)的单调增区间为(﹣∞,1﹣),(1+,+∞);单调减区间为(1﹣,1+).【解析】
分析:(1)求出导函数,题意说明,,,由此可求得;(1)解不等式得增区间,解不等式得减区间.详解:(1)∵f(x)的图象经过P(0,1),∴d=1,∴f(x)=x2+bx1+x+1,f'(x)=2x1+1bx+.∵点M(﹣1,f(﹣1))处的切线方程为6x﹣y+7=0∴f'(x)|x=﹣1=2x1+1bx+=2﹣1b+=6①,还可以得到,f(﹣1)=y=1,即点M(﹣1,1)满足f(x)方程,得到﹣1+b﹣a+1=1②由①、②联立得b==﹣2故所求的解析式是f(x)=x2﹣2x1﹣2x+1.(1)f'(x)=2x1﹣6x﹣2.令2x1﹣6x﹣2=0,即x1﹣1x﹣1=0.解得x1=1-,x1=1+.当x<1-,或x>1+时,f'(x)>0;当1-<x<1+时,f'(x)<0.故f(x)的单调增区间为(﹣∞,1﹣),(1+,+∞);单调减区间为(1﹣,1+)点睛:(1)过曲线上一点处的切线方程是;(1)不等式解集区间是函数的增区间,不等式的解集区间是的减区间.18、(1);(2)良好.【解析】
(1)由题意求出,,代入公式求值,从而得到回归直线方程;(2)根据公式计算并填写残差表;由公式计算相关指数,结合题意得出统计结论.【详解】(1)由已知图表可得,,,,则,,故.(2)∵,∴,,,,,则残差表如下表所示,∵,∴,∴该线性回归方程的回归效果良好.【点睛】本题考查了线性回归直线方程与相关系数的应用问题,是中档题.19、(1)2(2)2【解析】
试题分析:(1)根据绝对值定义,将函数化为分段函数形式,分别求各段最大值,最后取各段最大值的最大者为的值;(2)利用基本不等式得,即得的最大值.试题解析:(1)由于当时,,当时,,当时,所以.(2)由已知,有,因为(当时取等号),(当时取等号),所以,即,故的最大值为2.20、(1)分布列见解析.(2)分布列见解析;元.【解析】分析:(1)根据表格得到该超市水果日需求量(单位:千克)的分布列;(2)若A水果日需求量为140千克,则X=140×(15﹣10)﹣(150﹣140)×(10﹣8)=680元,则P(X=680)==0.1.若A水果日需求量不小于150千克,则X=150×(15﹣10)=750元,且P(X=750)=1﹣0.1=0.2.由此能求出X的分布列和数学期望E(X).详解:(1)的分布列为(2)若水果日需求量为千克,则元,且.若水果日需求量不小于千克,则元,且.故的分布列为元.点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 理赔业务风险管理跨部门协作风险基础知识点归纳
- 高效农田管理与作物精准栽培技术
- 翻转课堂的实践与探索
- 中风患者家属健康教育
- 中职护理学生职业生涯规划
- 门窗施工合同协议书
- 2025临时劳动合同短期工作合同
- 产科常见病护理及用药
- 中医便秘防治方案
- B族链球菌感染护理
- 机用虎钳毕业设计论文
- 现代密码学-清华大学-杨波着+习题答案
- 吊装作业安全技术交底大全
- 镍基高温合金氢脆行为研究进展与对策
- 当兵言语测试试题及答案
- 四川省眉山县2025届中考生物仿真试卷含解析
- 跨学科实践:制作望远镜-【跨学科实践】初中物理项目化课程案例
- 1-学校“1530”安全教育管理工作实施方案及记录
- 案场主管转正述职报告
- 促进自然分娩的健康教育
- 短缺药品上报流程
评论
0/150
提交评论