2023届山西省浑源县第五中学校高二数学第二学期期末质量检测模拟试题含解析_第1页
2023届山西省浑源县第五中学校高二数学第二学期期末质量检测模拟试题含解析_第2页
2023届山西省浑源县第五中学校高二数学第二学期期末质量检测模拟试题含解析_第3页
2023届山西省浑源县第五中学校高二数学第二学期期末质量检测模拟试题含解析_第4页
2023届山西省浑源县第五中学校高二数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.条件,条件,若是的必要不充分条件,则的取值范围是()A. B. C. D.2.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的x的值为()A. B. C. D.3.在中,角的对边分别是,若,则()A.5 B. C.4 D.34.已知曲线在处的切线与直线平行,则的值为()A.-3 B.-1 C.1 D.35.已知命题若实数满足,则或,,,则下列命题正确的是()A. B. C. D.6.用数学归纳法证明“能被13整除”的第二步中,当时为了使用归纳假设,对变形正确的是()A. B.C. D.7.已知集合,,则中元素的个数为()A.3 B.2 C.1 D.08.已知空间向量,,则()A. B. C. D.9.已知是实数,函数,若,则函数的单调递增区间是()A. B. C. D.10.已知曲线的参数方程为:,且点在曲线上,则的取值范围是()A. B. C. D.11.已知复数满足(为虚数单位),其中是的共轭复数,,则复数的虚部为()A. B. C. D.12.独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是()附:1.111.151.1111.1152.7163.8416.6357.879A.在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过1.11的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过1.115的前提下,认为运动员受伤与不做热身运动无关二、填空题:本题共4小题,每小题5分,共20分。13.如图,两条距离为4的直线都与轴平行,它们与抛物线和圆分别交于,和,,且抛物线的准线与圆相切,则的最大值为______.14.已知平面上1个三角形最多把平面分成2个部分,2个三角形最多把平面分成8个部分,3个三角形最多把平面分成20个部分,4个三角形最多把平面分成38个部分,5个三角形最多把平面分成62个部分…,以此类推,平面上个三角形最多把平面分成____________个部分.15.设数列的前项和为,已知,,,则______.16.10件产品中有2件次品,从中随机抽取3件,则恰有1件次品的概率是____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)集合A={x|-3≤x<5},B={x|-2<x<7}(1)求A∩B,A∪B(2)(∁RA)∩B.18.(12分)(1)已知,都是正数,并且,求证:;(2)若,都是正实数,且,求证:与中至少有一个成立.19.(12分)一个不透明的袋子中,放有大小相同的5个小球,其中3个黑球,2个白球.如果不放回的依次取出2个球.回答下列问题:(Ⅰ)第一次取出的是黑球的概率;(Ⅱ)第一次取出的是黑球,且第二次取出的是白球的概率;(Ⅲ)在第一次取出的是黑球的条件下,第二次取出的是白球的概率.20.(12分)已知集合,其中。表示集合A中任意两个不同元素的和的不同值的个数。(1)若,分别求和的值;(2)若集合,求的值,并说明理由;(3)集合中有2019个元素,求的最小值,并说明理由。21.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.22.(10分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若,且,,求

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】因为是的必要不充分条件,所以是的必要不充分条件,可以推导出,但是不能推导出,若,则等价于无法推导出;若,则等价于满足条件的为空集,无法推导出;若,则等价于,由题意可知,,,,的取值范围是,故选B.2、B【解析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案.【详解】本题由于已知输出时x的值,因此可以逆向求解:输出,此时;上一步:,此时;上一步:,此时;上一步:,此时;故选:B.【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.3、D【解析】

已知两边及夹角,可利用余弦定理求出.【详解】由余弦定理可得:,解得.故选D.【点睛】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.4、C【解析】

由导数的几何意义求出曲线在处的切线的斜率,根据两直线平行斜率相等即可得到的值。【详解】因为,所以线在处的切线的斜率为,由于曲线在处的切线与直线平行,故,即,故选C.【点睛】本题考查导数的几何意义,属于基础题5、C【解析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.6、A【解析】试题分析:假设当,能被13整除,当应化成形式,所以答案为A考点:数学归纳法7、B【解析】试题分析:集合中的元素为点集,由题意,可知集合A表示以为圆心,为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又圆与直线相交于两点,,则中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.8、D【解析】

先求,再求模.【详解】∵,,∴,∴.故选:D.【点睛】本题考查空间向量模的坐标运算,掌握空间向量模的坐标运算公式是解题基础.9、A【解析】分析:根据函数f(x)=x2(x﹣m),求导,把f′(﹣1)=﹣1代入导数f′(x)求得m的值,再令f′(x)>0,解不等式即得函数f(x)的单调增区间.详解:f′(x)=2x(x﹣m)+x2∵f′(﹣1)=﹣1∴﹣2(﹣1﹣m)+1=﹣1解得m=﹣2,∴令2x(x+2)+x2>0,解得,或x>0,∴函数f(x)的单调减区间是.故选:A.点睛:求函数的单调区间的方法(1)确定函数y=f(x)的定义域;(2)求导数y′=f′(x);(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间;(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.10、C【解析】分析:由题意得曲线C是半圆,借助已知动点在单位圆上任意动,而所求式子,的形式可以联想成在单位圆上动点P与点C(0,1)构成的直线的斜率,进而求解.详解:∵即

其中由题意作出图形,,

令,则可看作圆上的动点到点的连线的斜率而相切时的斜率,

由于此时直线与圆相切,

在直角三角形中,,由图形知,的取值范围是则的取值范围是.

故选C.点睛:此题重点考查了已知两点坐标写斜率,及直线与圆的相切与相交的关系,还考查了利用几何思想解决代数式子的等价转化的思想.11、A【解析】分析:设,利用的共轭复数是,列出方程组求a、b的值即可.详解:设,的共轭复数是,又,,又,,.故选:A.点睛:本题主要考查了复数的共轭复数与代数运算的应用问题.12、A【解析】

根据临界值表找到犯错误的概率,即可对各选项结论的正误进行判断.【详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选A.【点睛】本题考查独立性检验的基本思想,解题的关键就是利用临界值表找出犯错误的概率,考查分析能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先设直线的方程为,再利用直线与圆锥曲线的位置关系将用表示,再利用导数求函数的最值即可得解.【详解】解:由抛物线的准线与圆相切得或7,又,∴.设直线的方程为,则直线的方程为,则.设,,令,得;令,得.即函数在为增函数,在为减函数,故,从而的最大值为,故答案为:.【点睛】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.14、【解析】

设面上个三角形最多把平面分成个部分,归纳出,利用累加法的到答案.【详解】设面上个三角形最多把平面分成个部分.归纳:利用累加法:故答案为:【点睛】本题考查了归纳推理,累加法,综合性强,意在考查学生归纳推理和解决问题的能力.15、【解析】

先计算,归纳猜想【详解】由,,,可得,,归纳猜想:故答案为【点睛】本题考查了数列通项公式的归纳猜想,意在考查学生的归纳猜想能力.16、;【解析】

利用超几何分布的概率公式,直接求出恰有1件次品的概率.【详解】设事件为“从中随机抽取3件,则恰有1件次品”,则.【点睛】求解概率问题的第一步是识别概率模型,再运用公式计算概率值,本题属于超几分布概率模型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)A∪B={x|-3≤x<7};(2)(∁RA)∩B={x|5≤x<7}【解析】试题分析:利用数轴进行集合间的交并补运算.试题解析:(1)∵A={x|-3≤x<5},B={x|-2<x<7},∴A∪B={x|-3≤x<7};(2)∵A={x|-3≤x<5},B={x|-2<x<7},∴∁RA={x|x<-3或x≥5}则(∁RA)∩B={x|5≤x<7}点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.18、(1)详见解析;(2)详见解析.【解析】

(1)利用综合法,将两式做差,化简整理,即可证明(2)利用反证法,先假设原命题不成立,再推理证明,得出矛盾,即得原命题成立。【详解】(1)因为,都是正数,所以,又,所以,所以,所以,即.(2)假设和都不成立,即和同时成立.且,,.两式相加得,即.此与已知条件相矛盾,和中至少有一个成立.【点睛】本题主要考查综合法和反证法证明,其中用反证法证明时,要从否定结论开始,经过正确的推理,得出矛盾,即假设不成立,原命题成立,进而得证。19、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(Ⅰ)黑球有3个,球的总数为5个,代入概率公式即可;(Ⅱ)利用独立事件的概率公式直接求解即可;(Ⅲ)直接用条件概率公式求解.【详解】依题意,设事件A表示“第一次取出的是黑球”,设事件B表示“第二次取出的是白球”(Ⅰ)黑球有3个,球的总数为5个,所以P(A);(Ⅱ)第一次取出的是黑球,且第二次取出的是白球的概率为P(AB);(Ⅲ)在第一次取出的是黑球的条件下,第二次取出的是白球的概率为P(B|A).【点睛】本题考查了古典概型的概率公式,考查了事件的相互独立性及条件概率,属于基础题.20、(1)=5,=10(2)见解析;(3)最小值是4035【解析】

(1)根据题意进行元素相加即可得出和的值;(2)因为共有项,所以.由集合,任取,由此能出的值;(3)不妨设,可得,故中至少有4035个不同的数,即.由此能出的最小值.【详解】(1)由2+4=6,2+6=8,2+8=10,4+6=10,4+8=12,6+8=14,得=5,由1+2=3,1+4=5,1+8=9,1+16=17,2+4=6,2+8=10,2+16=18,4+8=12,4+16=20,8+16=24,得=10.(2)证明:因为共有项,所以.又集合,不妨设,m=1,2,…,n.,当时,不妨设,则,即,当时,,因此,当且仅当时,.即所有的值两两不同,因此.(3)不妨设,可得,故中至少有4035个不同的数,即.事实上,设成等差数列,考虑,根据等差数列的性质,当时,;当时,;因此每个和等于中的一个,或者等于中的一个.所以最小值是4035。【点睛】本题考查,,,的最小值的求法,是中档题,解题时要认真审题,注意集合性质、分类讨论思想的合理运用.21、(1)0.55(2)【解析】分析:(1)将保费高于基本保费转化为一年内的出险次数,再根据表中的概率求解即可.(2)根据条件概率并结合表中的数据求解可得结论.详解:(1)设表示事件:“一续保人本年度的保费高于基本保费”,则事件发生当且仅当一年内出险次数大于1,故.(2)设表示事件:“一续保人本年度的保费比基本保费高出”,则事件发生当且仅当一年内出险次数大于3,故.又,故,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论