




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数为虚数单位)的虚部为()A. B. C. D.2.已知点和,若某直线上存在点P,使得,则称该直线为“椭型直线”,现有下列直线:①;②;③;④.其中是“椭型直线”的是()A.①③ B.①② C.②③ D.③④3.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为()A. B. C. D.4.某班有50人,从中选10人均分2组(即每组5人),一组打扫教室,一组打扫操场,那么不同的选派法有()A. B. C. D.5.在等差数列中,且,则的最大值等于()A.3 B.4 C.6 D.96.若,,如果与为共线向量,则()A., B.,C., D.,7.函数在点处的切线方程为()A. B.C. D.8.若直线与曲线相切,则的最小值为()A. B. C. D.9.已知定义域为的函数满足,,当时,则()A. B.3 C. D.410.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()A.150种 B.180种 C.240种 D.540种11.过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为()A. B. C. D.12.的展开式的中间项为()A.24 B.-8 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某校有高一学生105人,高二学生126人,高三学生42人,现用分层抽样的方法从中抽取13人进行关于作息时间的问卷调查,设问题的选择分为“同意”和“不同意”两种,且每人都做了一种选择,下面表格中提供了被调查人答题情况的部分信息,估计所有学生中“同意”的人数为________人同意不同意合计高一2高二4高三114.如图所示,在平面四边形中,,,为正三角形,则面积的最大值为__________.15.向量,,在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量与共线,则________.16.已知函数,若函数恰有两个不同的零点,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)求过点的切线方程;(2)若方程有3个不同的实根,求的取值范围。(3)已知当时,恒成立,求实数的取值范围.18.(12分)甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率,(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;(Ⅱ)求甲恰好比乙多击中目标次的概率.19.(12分)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时,如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm³的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,求此锥形沙堆的高度.(精确到0.1cm)20.(12分)已知.(1)求的最小值;(2)已知为正数,且,求证.21.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.22.(10分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由虚数的定义求解.【详解】复数的虚部是-1.故选:B.【点睛】本题考查复数的概念,掌握复数的概念是解题基础.2、C【解析】
先确定动点的轨迹为椭圆,再考虑各选项中的直线与椭圆是否有公共点后可得正确的选项.【详解】由椭圆的定义知,点P的轨迹是以M,N为焦点的椭圆,其方程为.对于①,把代入,整理得,由,知不是“椭型直线”;对于②,把代入,整理得,所以是“椭型直线”;对于③,把代入,整理得,由,知是“椭型直线”;对于④,把代入,整理得,由,知不是“椭型直线”.故②③是“椭型直线”.故:C.【点睛】本题考查直线与椭圆的位置关系,此类问题一般联立直线方程和椭圆方程,消去一个变量后通过方程的解的个数来判断位置关系,本题属于基础题.3、B【解析】
记事件甲乙相邻,事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率.【详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.4、A【解析】
根据先分组,后分配的原则得到结果.【详解】由题意,先分组,可得,再一组打扫教室,一组打扫操场,可得不同的选派法有.故选A.【点睛】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组.注意各种分组类型中,不同分组方法的求解.5、B【解析】
先由等差数列的求和公式,得到,再由基本不等式,即可求出结果.【详解】因为在等差数列中,所以,即,又,所以,当且仅当时,的最大值为4.故选B。【点睛】本题主要考查基本不等式求积的最大值,熟记等差数列的求和公式以及基本不等式即可,属于常考题型.6、B【解析】
利用向量共线的充要条件即可求出.【详解】解:与为共线向量,存在实数使得,,解得.故选:.【点睛】本题考查空间向量共线定理的应用,属于基础题.7、B【解析】
首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.【点睛】本题考查导数的几何意义,属于基础题.8、C【解析】分析:由直线与曲线相切,可以表示出的值,然后用导数求出的最小值详解:由题意可得,设切点坐标为,,则则,令,时,,递减时,,递增的最小值为故选点睛:本题主要考查了运用导数的几何意义来求相切情况,在解答多元问题时,要将其转化为单元问题,本题在求解中转化为关于变量的最值,利用导数即可求出最小值。9、D【解析】
根据奇偶性和可知关于轴和对称,由对称性和周期性关系可确定周期为,进而将所求函数值化为,代入可求得结果.【详解】,为偶函数,图象关于轴对称;,关于直线对称;是周期为的周期函数,.故选:.【点睛】本题考查利用函数的性质求解函数值的问题,涉及到函数奇偶性、对称性和周期性的应用;关键是能够熟练掌握对称性和周期性的关系,准确求得函数的周期性.10、A【解析】先将个人分成三组,或,分组方法有中,再将三组全排列有种,故总的方法数有种.选A.11、A【解析】
直线的方程为,令,得,得到a,b的关系,结合选项求解即可【详解】直线的方程为,令,得.因为,所以,只有选项满足条件.故选:A【点睛】本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.12、C【解析】
由二项式展开式通项公式,再由展开式的中间项为展开式的第3项,代入求解即可.【详解】解:的展开式的中间项为展开式的第3项,即,故选:C.【点睛】本题考查了二项式展开式的通项公式,重点考查了展开式的中间项,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、126【解析】
根据抽样比求出各个年级抽取的人数,然后填表格,最后根据“同意的”比例求所有学生中“同意”的人数.【详解】一共人,抽样比高一学生:人,高二学生:人,高三学生人,同意不同意合计高一325高二246高三112同意的共有6人,同意的共有人.故答案为:126【点睛】本题考查分层抽样和统计的初步知识,属于基础题型.14、.【解析】分析:在中设运用余弦定理,表示出,利用正弦定理可得,进而用三角形面积公式表示出,利用三角函数的有界性可得结果.详解:在中,由余弦定理可知,正三角形,,由正弦定理得:,,,,为锐角,,,,当时,,最大值为,故答案为.点睛:本题考查正弦定理与余弦定理的应用以及辅助角公式的应用,属于难题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.15、【解析】
建立平面直角坐标系,从而得到的坐标,这样即可得出的坐标,根据与共线,可求出,从而求出的坐标,即得解.【详解】建立如图所示平面直角坐标系,则:;与共线故答案为:【点睛】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.16、【解析】分析:先根据导数研究图像,再根据与图像交点情况确定实数的取值范围.详解:令,所以当时,;当时,;作与图像,由图可得要使函数恰有两个不同的零点,需点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
求导带入求出切线斜率,再利用点斜式写出切线。求出的单调区间,极值,则在极小值与极大值之间。参变分离,求最值。【详解】(1)设切点为切线过(2)对函数求导,得函数令,即,解得,或,即,解得,的单调递增区间是及,单调递减区间是当,有极大值;当,有极小值当时,直线与的图象有3个不同交点,此时方程有3个不同实根。实数的取值范围为(3)时,恒成立,也就是恒成立,令,则,的最小值为,【点睛】本题考查曲线上某点的切线方程,两方程的交点问题以及参变分离。属于中档题。18、(1)分布列(见解析),Eξ=1.5;(2).【解析】
试题分析:(1)因甲每次是否击中目标相互独立,所以ξ服从二项分布,即,由期望或(二项分布);(2)甲恰好比乙多击中目标2次:分为2类,甲3次乙1次,甲2次乙0次.甲乙相互独立概率相乘.试题解析:甲射击三次其集中次数ξ服从二项分布:(1)P(ξ=0)=,P(ξ=1)=P(ξ=2)=,P(ξ=3)=ξ
0
1
2
3
P
ξ的概率分布如下表:Eξ=,(2)甲恰好比乙多击中目标2次:分为2类,甲3次乙1次,甲2次乙0次.甲乙相互独立概率相乘..考点:(1)二项分布及其概率计算;(2)独立事件概率计算.19、(1)一沙时为1986秒;(2)沙堆高度约为2.4cm.【解析】
(1)开始时,沙漏上部分圆锥中的细沙的高为,底面半径为39.71(秒)所以,沙全部漏入下部约需1986秒(2)细沙漏入下部后,圆锥形沙堆的底面半径4,设高为锥形沙堆的高度约为2.4cm.20、(1)3;(2)证明见解析.【解析】
(1)利用绝对值不等式求得函数的最小值.(2)利用基本不等式,证得不等式成立.【详解】(1)依题意,当且仅当时,取得最小值,故的最小值为.(2)由(1)知,,当且仅当时等号成立.【点睛】本小题主要考查利用绝对值不等求得最小值,考查利用基本不等式证明不等式,属于基础题.21、(1)见解析(2).【解析】
试题分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哈尔滨电力职业技术学院《走向富足通过科技改变人类未来》2023-2024学年第二学期期末试卷
- 扬州环境资源职业技术学院《大数据内存计算》2023-2024学年第二学期期末试卷
- 青岛城市学院《经济学通论》2023-2024学年第二学期期末试卷
- 长春工程学院《近代仪器分析》2023-2024学年第二学期期末试卷
- 广东邮电职业技术学院《价值观教育专题研究》2023-2024学年第二学期期末试卷
- 辽宁机电职业技术学院《妇女社会工作》2023-2024学年第二学期期末试卷
- 湖南交通工程学院《大学生创新创业实践》2023-2024学年第二学期期末试卷
- 泰州2025年江苏泰州兴化市部分高中学校校园招聘教师22人笔试历年参考题库附带答案详解
- 湖南中医药高等专科学校《中学化学教学设计(含课程标准与教材研究)》2023-2024学年第二学期期末试卷
- 湘西民族职业技术学院《自动机械设计》2023-2024学年第二学期期末试卷
- (正式版)JB∕T 14732-2024 中碳和中碳合金钢滚珠丝杠热处理技术要求
- 2024年食堂经理年终总结5篇
- 第22课 现代科技革命和产业发展(课件)-【中职专用】《世界历史》(高教版2023基础模块)
- 2024年南京科技职业学院单招职业适应性测试题库完整
- 家长会课件:小学三年级家长会 课件
- 医院专业技术年度考核总结报告
- 2024中考道法时政热点《中国外交大事大盘点》课件
- 小学生国家文化安全教育
- 2024年消防初级考试模拟试题和答案
- 小学五年级奥数竞赛试题(含答案)
- Unit-3-Reading-and-thinking课文详解课件-高中英语人教版必修第二册
评论
0/150
提交评论