版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.对于函数,曲线在与坐标轴交点处的切线方程为,由于曲线在切线的上方,故有不等式.类比上述推理:对于函数,有不等式()A. B.C. D.2.已知向量,若,则实数()A. B. C. D.3.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.55274.掷两颗均匀的骰子,则点数之和为5的概率等于()A. B. C. D.5.双曲线的渐近线的斜率是()A. B. C. D.6.已知向量,若,则()A. B. C. D.7.函数,,若,,则的取值范围为()A. B. C. D.8.函数的一个单调增区间是()A. B. C. D.9.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.10.一个球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下,则右边程序框图输出的S表示的是()A.小球第10次着地时向下的运动共经过的路程B.小球第10次着地时一共经过的路程C.小球第11次着地时向下的运动共经过的路程D.小球第11次着地时一共经过的路程11.某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:经计算,则下列选项正确的是A.有的把握认为使用智能手机对学习有影响B.有的把握认为使用智能手机对学习无影响C.有的把握认为使用智能手机对学习有影响D.有的把握认为使用智能手机对学习无影响12.已知是定义在上的奇函数,对任意,,都有,且对于任意的,都有恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知数列{2n-1·an}的前n项和Sn=9-6n,则数列{an}的通项公式是________.14.点到直线:的距离等于3,则_______.15.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14④他恰好有连续2次击中目标的概率为3×0.93×0.1其中正确结论的序号是______16.不等式的解为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知集合=,集合=.(1)若,求;(2)若AB,求实数的取值范围.18.(12分)“蛟龙号”从海底中带回某种生物,甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况进行研究,每次试验一个生物,甲组能使生物成活的概率为,乙组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验是失败的.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)若甲乙两小组各进行2次试验,求两个小组试验成功至少3次的概率.19.(12分)已知函数(且).(Ⅰ)当时,求函数的单调区间.(Ⅱ)当时,,求的取值范围.20.(12分)的内角所对的边分别为,已知.(1)证明:;(2)当取得最小值时,求的值.21.(12分)已知函数f(x)=3x,f(a+2)=81,g(x)=.(1)求g(x)的解析式并判断g(x)的奇偶性;(2)求函数g(x)的值域.22.(10分)设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,.(1)求B的大小.(2)若,,求b.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
求导,求出函数与轴的交点坐标,再求出在交点处的切线斜率,代入点斜式方程求出切线,在与函数图像的位置比较,即可得出答案.【详解】由题意得,且的图像与轴的交点为,则在处的切线斜率为,在处的切线方程为,因为切线在图像的上方,所以故选A【点睛】本题考查由导函数求切线方程以及函数图像的位置,属于一般题.2、B【解析】
由题得,解方程即得解.【详解】因为,所以.故选B【点睛】本题主要考查向量垂直的坐标表示,意在考查学生对该知识的理解掌握水平和分析推理能力.3、D【解析】
先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【点睛】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。4、B【解析】
试题分析:掷两颗均匀的骰子,共有36种基本事件,点数之和为5的事件有(1,4),(2,3),(3,2),(4,1)这四种,因此所求概率为,选B.考点:概率问题5、C【解析】
直接利用渐近线公式得到答案.【详解】双曲线渐近线方程为:答案为C【点睛】本题考查了双曲线的渐近线方程,属于简单题.6、C【解析】
首先根据向量的线性运算求出向量,再利用平面向量数量积的坐标表示列出方程,即可求出的值.【详解】因为,,所以,因为,所以,即,解得或,又,所以.故选:C.【点睛】本题主要考查平面向量的线性运算,平面向量数量积的坐标表示,属于基础题.7、C【解析】分析:利用均值定理可得≥2,中的,即≤2,所以a≤0详解:由均值不等式得≥2,当且仅当x=0取得≤2,,当a≤0时,≥2,≤2故本题选C点晴:本题是一道恒成立问题,恒成立问题即最值问题,本题结合均值,三角函数有界性等综合出题,也可以尝试特殊值方法进行解答8、B【解析】
对函数在每个选项的区间上的单调性进行逐一验证,可得出正确选项.【详解】对于A选项,当时,,所以,函数在区间上不单调;对于B选项,当时,,所以,函数在区间上单调递增;对于C选项,当时,,所以,函数在区间上单调递减;对于D选项,当时,,所以,函数在区间上单调递减.故选:B.【点睛】本题考查正弦型函数在区间单调性的判断,一般利用验证法进行判断,即求出对象角的取值范围,结合正弦函数的单调性进行判断,考查推理能力,属于中等题.9、C【解析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【点睛】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.10、C【解析】结合题意阅读流程图可知,每次循环记录一次向下运动经过的路程,上下的路程相等,则表示小球第11次着地时向下的运动共经过的路程.本题选择C选项.11、A【解析】
根据附表可得,所以有的把握认为使用智能手机对学习有影响,选A12、B【解析】
由可判断函数为减函数,将变形为,再将函数转化成恒成立问题即可【详解】,又是定义在上的奇函数,为R上减函数,故可变形为,即,根据函数在R上为减函数可得,整理后得,在为减函数,为增函数,所以在为增函数,为减函数在恒成立,即,当时,有最小值所以答案选B【点睛】奇偶性与增减性结合考查函数性质的题型重在根据性质转化函数,学会去“”;本题还涉及恒成立问题,一般通过分离参数,处理函数在某一区间恒成立问题二、填空题:本题共4小题,每小题5分,共20分。13、an=【解析】当n=1时,20·a1=S1=3,∴a1=3.当n≥2时,2n-1·an=Sn-Sn-1=-6.∴an=-.∴数列{an}的通项公式为an=.14、或【解析】
直接利用点到直线的距离公式列方程,即可得到答案.【详解】由题意可得:,解得或.故答案为:或.【点睛】本题考查点到直线的距离公式,考查基本运算求解能力,属于基础题.15、①③【解析】分析:由题意知射击一次击中目标的概率是0.9,得到第3次击中目标的概率是0.9,连续射击4次,且他各次射击是否击中目标相互之间没有影响,得到是一个独立重复试验,根据独立重复试验的公式即可得到结果.详解:射击一次击中目标的概率是0.9,第3次击中目标的概率是0.9,①正确;连续射击4次,且各次射击是否击中目标相互之间没有影响,本题是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率是,②不正确;至少击中目标1次的概率是1-0.14③正确;恰好有连续2次击中目标的概率为,④不正确.故答案为:①③.点睛:本题主要考查了独立重复试验,以及n次独立重复试验中恰好发生k次的概率.16、或或或【解析】
利用组合数公式得出关于的不等式,解出的取值范围,即可得出正整数的取值.【详解】,由组合数公式得,得,整理得,即,解得,由题意可知且,因此,不等式的解为或或或.故答案为:或或或.【点睛】本题考查组合不等式的求解,解题的关键就是利用组合数公式列出不等式,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)先化简集合A,B,再求.(2)先化简集合A,B,再根据AB得到,解不等式得到实数的取值范围.详解:(1)当时,,解得.则.由,得.则.所以.(2)由,得.若AB,则解得.所以实数的取值范围是.点睛:(1)本题主要考查集合的运算和集合的关系,意在考查学生对这些知识的掌握水平和基本计算能力.(2)把分式不等式通过移项、通分、因式分解等化成的形式→化成不等式组→解不等式组得解集.18、(1);(2)【解析】
(1)“三次试验中至少两次试验成功”是指三次试验中,有2次试验成功或3次试验全部成功,先计算出2次与3次成功的概率,相加即可得到所要求的概率.(2)分成功3次,4次两种情况求其概率相加即可【详解】(1)设“甲小组做了三次实验,至少两次试验成功”为事件A,则其概率为.(2)设“甲乙两小组试验成功3次”为事件B,则,设“甲乙两小组试验成功4次”为事件C,则,故两个小组试验成功至少3次的概率为.【点睛】本题考查概率的求法,考查n次独立重复试验某事件恰好发生k次的概率、相互独立事件的概率乘法公式,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19、(Ⅰ)单调减区间为,单调增区间为(Ⅱ)k<0或k【解析】
(Ⅰ)求得函数的导数,根据导数的符号,即可求得函数的单调区间;(Ⅱ)当时,,当时,上不等式成立;当时,不等式等价于,设,进而令,利用导数求得函数的单调区间和最值,从而可求得的取值范围.【详解】(Ⅰ)由题意,函数f(x),则,当时,,当时,,所以函数的单调减区间为,单调增区间为.(Ⅱ)时,,①当时,上不等式成立,满足题设条件;②当时,,等价于,设,则,设,则,∴在[1,+∞)上单调递减,得,①当,即时,得,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,又单调递减,∴当,得,∴在上单调递增,得,不满足题设条件.综上所述,或.【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(1)见解析;(2).【解析】分析:(1)由正弦定理和余弦定理化简即可;(2),当且仅当,即时,取等号.从而即可得到答案.详解:(1)∵,∴即∵,∴.(2)当且仅当,即时,取等号.∵,∴点睛:解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 东莞危化品货运合同范本
- 2024年度宠物食品供应合同:宠物店与供应商之间的货物采购协议
- 2024年度广告制作合同:甲方委托乙方制作一则电视广告
- 果糖与健康关系探讨
- 金融科技在量化分析中的应用探索
- 2024年度商业空间导视系统设计合同
- 2024版LED显示屏制作合同
- 《门诊肠镜检查患者临床特征的研究》
- 二零二四年度农产品采购合同书(04版)
- 《发酵米糠制备FOs对鱼糜凝胶特性和鱼肉保鲜影响的研究》
- juniper防火墙培训(SRX系列)
- GB/T 13610-2020天然气的组成分析气相色谱法
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
- 街道火灾事故检讨
- 最新班组安全管理安全生产标准化培训课件
- 《一粒种子成长过程》的课件
- 学好语文贵在三个“多”:多读、多背、多写-浅谈语文学法指导
- 助人为乐-主题班会(课件)
- 麻醉科护师晋升副主任医师高级职称专题报告病例分析(麻醉诱导后喉痉挛急救与护理)
评论
0/150
提交评论