




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调递增区间是()A. B. C. D.2.给定下列两种说法:①已知,命题“若,则”的否命题是“若,则”,②“,使”的否定是“,使”,则()A.①正确②错误 B.①错误②正确 C.①和②都错误 D.①和②都正确3.如图,在正方形中,点E,F分别为边,的中点,将、分别沿、所在的直线进行翻折,在翻折的过程中,下列说法错误是()A.存在某个位置,使得直线与直线所成的角为B.存在某个位置,使得直线与直线所成的角为C.A、C两点都不可能重合D.存在某个位置,使得直线垂直于直线4.曲线的极坐标方程化为直角坐标为()A. B.C. D.5.定积分的值为()A.3 B.1 C. D.6.将3名教师,5名学生分成3个小组,分别安排到甲、乙、丙三地参加社会实践活动,每地至少去1名教师和1名学生,则不同的安排方法总数为()A.1800 B.1440 C.300 D.9007.已知等比数列{an}中,,,则()A.±2 B.-2 C.2 D.48.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度.如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83A.25% B.95%C.5% D.97.5%9.先后抛掷一枚质地均匀的骰子5次,那么不能作为随机变量的是()A.出现7点的次数 B.出现偶数点的次数C.出现2点的次数 D.出现的点数大于2小于6的次数10.某农场给某种农作物的施肥量x(单位:吨)与其产量y(单位:吨)的统计数据如表:由于表中的数据,得到回归直线方程为y=9.4x+a.,当施肥量x=6时,该农作物的预报产量是(A.72.0 B.67.7 C.65.5 D.63.611.在打击拐卖儿童犯罪的活动中,警方救获一名男孩,为了确定他的家乡,警方进行了调查:知情人士A说,他可能是四川人,也可能是贵州人;知情人士B说,他不可能是四川人;知情人士C说,他肯定是四川人;知情人士D说,他不是贵州人.警方确定,只有一个人的话不可信.根据以上信息,警方可以确定这名男孩的家乡是()A.四川 B.贵州C.可能是四川,也可能是贵州 D.无法判断12.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是()A.甲 B.乙 C.丙 D.丁二、填空题:本题共4小题,每小题5分,共20分。13.复数满足,则的最小值是___________.14.用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m被抽到的概率为_____.15.若C9x=16.有一棱长为的正方体框架,其内放置气球,使其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)把圆分成个扇形,设用4种颜色给这些扇形染色,每个扇形恰染一种颜色,并且要求相邻扇形的颜色互不相同,设共有种方法.(1)写出,的值;(2)猜想,并用数学归纳法证明.18.(12分)如图,在四棱锥中,是以为斜边的直角三角形,,,,.(1)若线段上有一个点,使得平面,请确定点的位置,并说明理由;(2)若平面平面,求直线与平面所成角的正弦值.19.(12分)如图,在三棱锥中,平面平面,,,,为的中点.(1)证明:平面;(2)求二面角的余弦值.20.(12分)在某市举行的一次市质检考试中,为了调查考试试题的有效性以及试卷的区分度,该市教研室随机抽取了参加本次质检考试的500名学生的数学考试成绩,并将其统计如下表所示.根据上表数据统计,可知考试成绩落在之间的频率为.(Ⅰ)求m、n的值;(Ⅱ)已知本欢质检中的数学测试成绩,其中近似为样本的平均数,近似为样本方差,若该市有4万考生,试估计数学成绩介于分的人数;以各组的区间的中点值代表该组的取值Ⅲ现按分层抽样的方法从成绩在以及之间的学生中随机抽取12人,再从这12人中随机抽取4人进行试卷分析,记被抽取的4人中成绩在之间的人数为X,求X的分布列以及期望.参考数据:若,则,,.21.(12分)某快递公司(为企业服务)准备在两种员工付酬方式中选择一种现邀请甲、乙两人试行10天两种方案如下:甲无保底工资送出50件以内(含50件)每件支付3元,超出50件的部分每件支付5元;乙每天保底工资50元,且每送出一件再支付2元分别记录其10天的件数得到如图茎叶图,若将频率视作概率,回答以下问题:(1)记甲的日工资额为(单位:元),求的分布列和数学期望;(2)如果仅从日工资额的角度考虑请利用所学的统计学知识为快递公司在两种付酬方式中作出选择,并说明理由.22.(10分)某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:方案一:逐瓶检验,则需检验次;方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.(i)若与的期望相等.试求关于的函数解析式;(ii)若,且采用方案二总次数的期望小于采用方案一总次数的期望.求的最大值.参考数据:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先求得函数的定义域,然后利用导数求得函数的单调递增区间.【详解】依题意,函数的定义域为,,故当时,,所以函数的单调递增区间为,故选C.【点睛】本小题主要考查利用导数求函数的单调递增区间,考查导数的运算,属于基础题.2、D【解析】
根据否命题和命题的否定形式,即可判定①②真假.【详解】①中,同时否定原命题的条件和结论,所得命题就是它的否命题,故①正确;②中,特称命题的否定是全称命题,所以②正确,综上知,①和②都正确.故选:D【点睛】本题考查四种命题的形式以及命题的否定,注意命题否定量词之间的转换,属于基础题.3、D【解析】
在A中,可找到当时,直线AF与直线CE垂直;在B中,由选项A可得线AF与直线CE所成的角可以从到,自然可取到;在C中,若A与C重合,则,推出矛盾;在D中,若AB⊥CD,可推出则,矛盾.【详解】解:将DE平移与BF重合,如图:在A中,若,又,则面,则,即当时,直线AF与直线CE垂直,故A正确;
在B中,由选项A可得线AF与直线CE所成的角可以从到,必然会存在某个位置,使得直线AF与直线CE所成的角为60°,故B正确;在C中,若A与C重合,则,不符合题意,则A与C恒不重合,故C正确;
在D中,,又CB⊥CD,则CD⊥面ACB,所以AC⊥CD,即,又,则,矛盾,故D不成立;
故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.4、B【解析】
利用直角坐标与极坐标的互化公式,即可得到答案.【详解】由曲线的极坐标方程,两边同乘,可得,再由,可得:,所以曲线的极坐标方程化为直角坐标为故答案选B【点睛】本题考查把极坐标转化为直角坐标方程的方法,熟练掌握直角坐标与极坐标的互化公式是解题的关键,属于基础题.5、C【解析】
运用定积分运算公式,进行求解计算.【详解】,故本题选C.【点睛】本题考查了定积分的运算,属于基础题.6、D【解析】
将三个教师全排列安排到三地,再利用分组、分配方法安排学生,可求出答案.【详解】先将3名教师安排到甲、乙、丙三地有种分法,然后安排5名学生,将5名学生可分为1,1,3三组,也可分为2,2,1三组,则安排到三地有种方法;根据分步乘法原理,可知不同的安排方法总数为种.故选D.【点睛】本题考查了分步乘法原理的应用,考查了分配问题,考查了计算能力,属于中档题.7、C【解析】
根据等比数列性质得,,再根据等比数列性质求得.【详解】因为等比数列中,,所以,即以,因此=,因为,同号,所以选C.【点睛】在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.8、D【解析】∵k>5.024,而在观测值表中对应于5.024的是0.025,∴有1-0.025=97.5%的把握认为“X和Y有关系”,
故选D.9、A【解析】
根据随机变量的定义可得到结果.【详解】抛掷一枚骰子不可能出现点,出现点为不可能事件出现点的次数不能作为随机变量本题正确选项:【点睛】本题考查随机变量的定义,属于基础题.10、C【解析】
根据回归直线方程过样本的中心点(x,y),先求出中心点的坐标,然后求出【详解】x=2+3+4+54=3.5,y=26+39+49+544=42,因为回归直线方程过样本的中心点(x【点睛】本题考查了回归直线方程的性质,考查了数学运算能力.11、A【解析】
先确定B,C中必有一真一假,再分析出A,D两个正确,男孩为四川人.【详解】第一步,找到突破口B和C的话矛盾,二者必有一假.第二步,看其余人的话,A和D的话为真,因此男孩是四川人.第三步,判断突破口中B,C两句话的真假,C的话为真,B的话为假,即男孩为四川人.故选:A【点睛】本题主要考查分析推理,意在考查学生对该知识的理解掌握水平,属于基础题.12、A【解析】
①假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;②假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;③假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,求出圆心到原点的距离,最短距离要减去半径即可得解.【详解】解:复数满足,点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,连接圆心与原点,长度是,最短距离要减去半径故答案为:【点睛】本题考查复数的几何意义,本题解题的关键是看出复数对应的点在圆上,根据圆上到原点的最短距离得到要求的距离,属于基础题.14、【解析】
总体含100个个体,从中抽取容量为5的样本,则每个个体被抽到的概率为.【详解】因为总体含100个个体,所以从中抽取容量为5的样本,则每个个体被抽到的概率为.【点睛】本题考查简单随机抽样的概念,即若总体有个个体,从中抽取个个体做为样本,则每个个体被抽到的概率均为.15、3或4【解析】
结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.16、【解析】
气球表面积最大时,球与正方体的各棱相切.【详解】由题意要使气球的表面积最大,则球与正方体的各棱相切,∴球的直径等于正方体的面对角线长,即为,半径为,球的表面积为.故答案为:.【点睛】本题考查球与正方体的切接问题,解题时要注意分辩:球是正方体的内切球(球与正方体各面相切),球是正方体的棱切球(球与正方体的所有棱相切),球是正方体的外接球(正方体的各顶点在球面上).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】分析:(1)根据题意,得;(2)分析可得,用用数学归纳法证明即可详解:(1)(2).当时,首先,对于第1个扇形,有4种不同的染法,由于第2个扇形的颜色与的颜色不同,所以,对于有3种不同的染法,类似地,对扇形,…,均有3种染法.对于扇形,用与不同的3种颜色染色,但是,这样也包括了它与扇形颜色相同的情况,而扇形与扇形颜色相同的不同染色方法数就是,于是可得猜想当时,左边,右边,所以等式成立假设时,,则时,即时,等式也成立综上点睛:本题考查考查归纳分析能力,考查数学归纳法的应用,属中档题.18、(1)当P为AD的中点时,平面PBE(2)【解析】
要证线面平行,需证明线线平行,所以取中点,连接,即证明;(2)过B作于H,连结HE,证明两两垂直,以点为原点,建立空间直角坐标系,求平面的法向量,利用公式求解.【详解】解:(1)当P为AD的中点时,,又因为平面PBE,平面PBE,所以平面PBE.(2)过B作于H,连结HE,在等腰梯形ABCD中易知.在中,,,,可得.又因为,平面平面ADE,且平面平面,所以平面ADE,所以.如图,以H为原点,HE,HD,HB所在直线分别为x轴,y轴,z轴建立空间直角坐标系.则,,,.所以,..设平面ABE的一个法向量,则,即,取,得.设直线CD与平面ABE所成角为,所以.【点睛】本题重点考查了线面角的求法,坐标法的一个难点是需建立空间直角坐标系,这个过程往往需要证明,证明后再建立空间直角坐标系,利用公式求解.19、(1)证明见解析.(2).【解析】分析:(1)证,.即可由线面垂的判定定理得出结论;(2)通过建系,分别求出面DSC和面SCA的法向量,进行计算,观察图中二面角的范围得出余弦值的符号(1)证明:因为平面平面,平面平面,且,所以平面,所以.又因为,,所以,即.因为,且平面,所以平面.(2)解:如图,建立空间直角坐标系,令,则,,,,.易得,,.设为平面的一个法向量,则,取,则,,所以.又因为为平面的一个法向量,所以.所以二面角的余弦值为.点晴:空间立体是高考必考的解答题之一,在做这类题目时,正面题大家需要注意书写的步骤分,判定定理的必要点必须要有;另外在求角等问题时我们可以利用向量法进行解决问题,注意角的范围问题.20、(Ⅰ);(Ⅱ)5416;(Ⅲ)详见解析.【解析】
(Ⅰ)根据考试成绩落在之间的频率为,可知频数为140,结合样本数可求m、n;(Ⅱ)先求出样本数的平均数和方差,再结合正态分布求出数学成绩介于分的人数;(Ⅲ)求出X的所有可能取值,分别求得概率,列出分布列求出期望.【详解】解:Ⅰ由题意可得解得.Ⅱ依题意,成绩X人数Y1012021010040频率0.060.240.420.200.08故,.则,所以,故所求人数为.Ⅲ依题意成绩在之间的抽取9人,成绩在之间的抽取1人,故X的可能取值为0,1,2,1.故,,,.故X的分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年三门峡职业技术学院辅导员考试真题
- 2024年北京北大方正软件职业技术学院辅导员考试真题
- 卫生室空调安全管理制度
- 九龙坡公司员工管理制度
- 幼儿园数学培训管理制度
- 公司商标部经营管理制度
- 服务大厅住宿管理制度
- 反洗钱完善财务管理制度
- 办公室家具设备管理制度
- 跟腱修复康复治疗讲课件
- 人文关怀示范病房工作分享课件
- 2025年铁路客运值班员(中级)职业技能鉴定参考试题库(含答案)
- 2025年中国磷酸铁行业发展趋势预测及投资战略咨询报告
- 水利工程施工组织设计模板
- 医院感染暴发报告及处置制度及流程
- 2025经皮穿刺脊髓电刺激治疗痛性糖尿病神经病变专家共识
- 山东省潍坊市2024-2025学年高二上学期期末考试历史试题(原卷版+解析版)
- 模具定制合同订单
- 中国影视产业发展现状与前景预测
- 人工智能辅助科研数据挖掘与分析
- 高速公路隧道防水层施工方案
评论
0/150
提交评论