版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
拆分方程建模分析第1页,共173页,2023年,2月20日,星期一1、什么是数学模型?
数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。第2页,共173页,2023年,2月20日,星期一2、什么是数学建模?
数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。观点:“所谓高科技就是一种数学技术”第3页,共173页,2023年,2月20日,星期一
数学建模其实并不是什么新东西,可以说有了数学并需要用数学去解决实际问题,就一定要用数学的语言、方法去近似地刻划该实际问题,这种刻划的数学表述的就是一个数学模型,其过程就是数学建模的过程。数学模型一经提出,就要用一定的技术手段(计算、证明等)来求解并验证,其中大量的计算往往是必不可少的,高性能的计算机的出现使数学建模这一方法如虎添翼似的得到了飞速的发展,掀起一个高潮。
数学建模将各种知识综合应用于解决实际题中,是培养和提高同学们应用所学知识分析问题、解决问题的能力的必备手段之一。第4页,共173页,2023年,2月20日,星期一在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定。机理分析法建模的具体步骤大致可见右图。符合实际不符合实际交付使用,从而可产生经济、社会效益实际问题抽象、简化、假设确定变量、参数建立数学模型并数学、数值地求解、确定参数用实际问题的实测数据等来检验该数学模型建模过程示意图第5页,共173页,2023年,2月20日,星期一
模型
数学模型的分类:◆按研究方法和对象的数学特征分:初等模型、几何模型、优化模型、微分方程模型、图论模型、逻辑模型、稳定性模型、扩散模型等。◆按研究对象的实际领域(或所属学科)分:人口模型、交通模型、环境模型、生态模型、生理模型、城镇规划模型、水资源模型、污染模型、经济模型、社会模型等。三、数学模型及其分类第6页,共173页,2023年,2月20日,星期一
正是由于认识到培养应用型、研究型科技人才的重要性,而传统的数学竞赛不能担当这个任务,从1983年起,美国就有一些有识之士探讨组织一项应用数学方面的竞赛的可能性。经过论证、争论、争取资金等过程,1985年举行了美国第一届大学生数学建模竞赛。简称MCM竞赛由美国工业与用数学学会和美国运筹学学会联合主办。第7页,共173页,2023年,2月20日,星期一
从1985年起每年举行一届,时间定为每年的二月下旬或三月初的星期五到星期日举行。
这项竞赛的宗旨是鼓励学生运用所学的知识(数学及其各门科学的知识)去参与解决实际问题的全过程。这些实际问题并不限于某个固定领域,可以涉及非常广泛的、并不固定的范围和领域。第8页,共173页,2023年,2月20日,星期一
美国的MCM虽然只是美国的国内赛,但它欢迎其他国家的大学组队参加,而且越来越多国家的大学参加这一竞赛,因此,在某种意义上它已经是国际比赛。我国最早由北京三所大学组队参加美国的MCM竞赛,继后我国参加此项比赛的大学越来越多。第9页,共173页,2023年,2月20日,星期一内容赛题:工程、管理中经过简化的实际问题答卷:一篇包含问题分析、模型假设、建立、求解(通常用计算机)、结果分析和检验等的论文形式
3名大学生组队,在3天内完成的通讯比赛可使用任何“死”材料(图书/互联网/软件等),但不得与队外任何人讨论(包括上网讨论)宗旨创新意识团队精神重在参与公平竞争标准假设的合理性,建模的创造性,结果的正确性,表述的清晰性。数学建模竞赛内容与形式第10页,共173页,2023年,2月20日,星期一我国大学生数学建模竞赛(CUMCM)
1992年中国工业与应用数学学会(CSIAM)开始组织
1994年起教育部高教司和CSIAM共同举办(每年9月)
2008年有31省(市、区)的1022所学校12836队参加网址:奖励:全国一等奖(约2%)、全国二等奖(约7%)教育部高教司和CSIAM共同签章
1999年起竞赛分为甲组(本科)、乙组(高职高专组)
优秀论文刊登于次年《工程数学学报》(2000年前为《数学的实践与认识》)¤2009年全国有33个省/市/自治区(包括香港和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛(其中西藏和澳门是首次参赛)!第11页,共173页,2023年,2月20日,星期一怎样撰写数学建模的论文?1、摘要:问题、模型、方法、结果2、问题重述4、分析与建立模型5、模型求解6、模型检验7、模型推广8、参考文献9、附录实例3、模型假设
返回实例参考解答第12页,共173页,2023年,2月20日,星期一差分方程建模•处理动态的离散型的问题•处理对象虽然涉及的变量(如时间)是连续的,但是从建模的目的考虑,把连续变量离散化更为合适,将连续变量作离散化处理,从而将连续模型(微分方程)化为离散型(差分方程)问题
第13页,共173页,2023年,2月20日,星期一第一讲差分方程基础知识设一阶差分:一阶后向差分一阶前向差分注:差分是导数的一种推广高阶差分:第14页,共173页,2023年,2月20日,星期一第一讲差分方程基础知识性质1(可加性):微分的性质与运算:۩۩性质2(齐次性):۩性质3(线性性):۩性质3(线性性):۩性质4(乘积):۩性质4(除法运算):第15页,共173页,2023年,2月20日,星期一第一讲差分方程基础知识性质1(可加性):差分的性质与运算:۩۩性质2(齐次性):۩性质3(线性性):۩性质3(线性性):۩性质4(乘积):۩性质4(除法运算):注:注意它与微分性质的比较第16页,共173页,2023年,2月20日,星期一第一讲差分方程基础知识差分的性质与运算:第17页,共173页,2023年,2月20日,星期一第一讲差分方程基础知识差分方程及其解:定义2:包含未知函数及差分的方程式称为差分方程注:差分方程的实质就是递推公式线性差分方程:差分方程的解:第18页,共173页,2023年,2月20日,星期一常微分方程化为差分方程
用导数近似式替代导数或者说用适当近似式替代含有导数的表达式,可以得到这些近似值满足的代数方程----差分方程以二阶常微分方程边值问题为例
目的求差分法第19页,共173页,2023年,2月20日,星期一一般k阶常系数线性差分方程为差分方程边值问题第20页,共173页,2023年,2月20日,星期一二偏微分方程化为差分方程以二阶椭圆方程的边值问题为例用两族平行坐标轴的直线
正方形网格把区域G剖分
第21页,共173页,2023年,2月20日,星期一节点可分三类
1°通过该节点的网格线上的相邻四网点都在G内,记
G12°在G内部但不属于G1
,记G23°恰在边界上记G3
确定各节点处解的近似值uij,需要建立代数方程,每一节点建立一个代数方程任务第22页,共173页,2023年,2月20日,星期一
(i,j-1)
(i,j+1)
(i-1,j)
(i,j)(i+1,j)
偏导数近似式替代第23页,共173页,2023年,2月20日,星期一差分方程
N
(i,j)
E
第24页,共173页,2023年,2月20日,星期一
偏导数近似式替代第25页,共173页,2023年,2月20日,星期一和分(反差分)周期函数:如果和分:若则称为的和分(反差分),记为或者第26页,共173页,2023年,2月20日,星期一积分中的N-L公式和分中的N-L公式定理:若在上有定义,并且,则练习:计算第27页,共173页,2023年,2月20日,星期一四二阶常系数齐次差分方程求法
齐次差分方程
(1)特征方程有两个不相等实根
(2)特征方程有两个相等实根
第28页,共173页,2023年,2月20日,星期一例:求解差分方程例:求解差分方程初值问题解:特征方程为从而特征根为所以差分方程的解为第29页,共173页,2023年,2月20日,星期一(3)特征方程有一对共轭复根
则为一对复值解.令第30页,共173页,2023年,2月20日,星期一例:求解差分方程第31页,共173页,2023年,2月20日,星期一非齐次差分方程非齐次方程的通解=非齐次的特解+齐次的通解解法:1.待定系数法2.常数变易法例:兔子问题在一年的时间里,一对兔子能够生育出多少对兔子?第32页,共173页,2023年,2月20日,星期一每对兔子每个月生育出新的一对兔子假设新的一对兔子在一个月之后具有生育能力其次这些兔子都不死亡第n个月开始时兔子对数模型结果Fibonacci数列黄金分割比第33页,共173页,2023年,2月20日,星期一市场经济中的蛛网模型问题供大于求现象商品数量与价格的振荡在什么条件下趋向稳定当不稳定时政府能采取什么干预手段使之稳定价格下降减少产量增加产量价格上涨供不应求描述商品数量与价格的变化规律数量与价格在振荡第34页,共173页,2023年,2月20日,星期一蛛网模型gx0y0P0fxy0xk~第k时段商品数量;yk~第k时段商品价格消费者的需求关系生产者的供应关系减函数增函数供应函数需求函数f与g的交点P0(x0,y0)~平衡点一旦xk=x0,则yk=y0,xk+1,xk+2,…=x0,yk+1,yk+2,…=y0
第35页,共173页,2023年,2月20日,星期一xy0fgy0x0P0设x1偏离x0x1x2P2y1P1y2P3P4x3y3P0是稳定平衡点P1P2P3P4P0是不稳定平衡点xy0y0x0P0fg曲线斜率蛛网模型第36页,共173页,2023年,2月20日,星期一在P0点附近用直线近似曲线P0稳定P0不稳定方程模型方程模型与蛛网模型的一致第37页,共173页,2023年,2月20日,星期一~商品数量减少1单位,价格上涨幅度~价格上涨1单位,(下时段)供应的增量考察,的含义~消费者对需求的敏感程度~生产者对价格的敏感程度小,有利于经济稳定小,有利于经济稳定结果解释xk~第k时段商品数量;yk~第k时段商品价格经济稳定结果解释第38页,共173页,2023年,2月20日,星期一经济不稳定时政府的干预办法1.使尽量小,如=0
以行政手段控制价格不变2.使尽量小,如=0靠经济实力控制数量不变xy0y0gfxy0x0gf结果解释需求曲线变为水平供应曲线变为竖直第39页,共173页,2023年,2月20日,星期一模型的推广生产者根据当前时段和前一时段的价格决定下一时段的产量。生产者管理水平提高设供应函数为需求函数不变二阶线性常系数差分方程x0为平衡点研究平衡点稳定,即k,xkx0的条件第40页,共173页,2023年,2月20日,星期一方程通解(c1,c2由初始条件确定)1,2~特征根,即方程的根平衡点稳定,即k,xkx0的条件:平衡点稳定条件比原来的条件放宽了模型的推广第41页,共173页,2023年,2月20日,星期一银行复利问题
背景所付利息一年内复合n次,即把一年分n个相等的时间段,而所付利息为每一时间段的未尾
.给出一个可以预测在任意给定时间的帐目余额
分析帐目余额与时间直接相关,而时间是离散的本期结束时的总存款等于前一时期余下的本利,及本利得到的利息与第本期内新存入的存款之和
任何时候都可以存款第42页,共173页,2023年,2月20日,星期一模型假设1.储蓄的年利率为
r2.任何时候都可以存款,但存款利息只从下一时期开始计算,如时间段开始第一天的存款即开始计算利息
t期结束时的总存款
记号第t期内的新存款
第43页,共173页,2023年,2月20日,星期一模型注:上式中n=2时,相应于半年的复利,而n=365则是相应于逐日计算的复利第44页,共173页,2023年,2月20日,星期一抵押贷款买房问题
背景每户人家都希望有一套属于自己的住房,但又没有足够的资金一次买下。这就产生了贷款买房问题。某新婚夫妇急需一套属于自己的住房。他们看到一则理想的房产广告:“名流花园之高尚住宅公寓,供工薪阶层选择。一次性付款优惠价40.2万元。若不能一次性付款也没关系,只付首期款为15万元,其余每月1977.04元等额偿还,15年还清。(公积金贷款月利息为3.675‰)。问题公寓原来价多少?每月等额付款如何算出来?第45页,共173页,2023年,2月20日,星期一假设贷款期限内利率不变银行利息按复利计算
记号A(元):贷款额(本金)
n(月):货款期限r
:月利率B(元):月均还款额
Ck:第k个月还款后的欠款第46页,共173页,2023年,2月20日,星期一模型求解代入n=180、
r=0.003675、
B=1977.04结果:A=260000(元)一次性优惠价9.8折还款总额利息负担总额第47页,共173页,2023年,2月20日,星期一减肥计划——节食与运动背景多数减肥食品达不到减肥目标,或不能维持通过控制饮食和适当的运动,在不伤害身体的前提下,达到减轻体重并维持下去的目标分析体重变化由体内能量守恒破坏引起饮食(吸收热量)引起体重增加代谢和运动(消耗热量)引起体重减少体重指数BMI=w(kg)/l2(m2).18.5<BMI<25~正常;BMI>25~超重;BMI>30~肥胖.第48页,共173页,2023年,2月20日,星期一模型假设1)体重增加正比于吸收的热量——每8000千卡增加体重1千克;2)代谢引起的体重减少正比于体重——每周每公斤体重消耗200千卡~320千卡(因人而异),
相当于70千克的人每天消耗2000千卡~3200千卡;3)运动引起的体重减少正比于体重,且与运动形式有关;4)为了安全与健康,每周体重减少不宜超过1.5千克,每周吸收热量不要小于10000千卡。第49页,共173页,2023年,2月20日,星期一某甲体重100千克,目前每周吸收20000千卡热量,体重维持不变。现欲减肥至75千克。第一阶段:每周减肥1千克,每周吸收热量逐渐减少,直至达到下限(10000千卡);第二阶段:每周吸收热量保持下限,减肥达到目标2)若要加快进程,第二阶段增加运动,试安排计划。1)在不运动的情况下安排一个两阶段计划。减肥计划3)给出达到目标后维持体重的方案。第50页,共173页,2023年,2月20日,星期一确定某甲的代谢消耗系数即每周每千克体重消耗20000/100=200千卡基本模型w(k)~第k周(末)体重c(k)~第k周吸收热量~代谢消耗系数(因人而异)1)不运动情况的两阶段减肥计划每周吸收20000千卡w=100千克不变第51页,共173页,2023年,2月20日,星期一第一阶段:w(k)每周减1千克,c(k)减至下限10000千卡第一阶段10周,每周减1千克,第10周末体重90千克吸收热量为1)不运动情况的两阶段减肥计划第52页,共173页,2023年,2月20日,星期一第二阶段:每周c(k)保持Cm,w(k)减至75千克1)不运动情况的两阶段减肥计划基本模型第53页,共173页,2023年,2月20日,星期一第二阶段:每周c(k)保持Cm,w(k)减至75千克第二阶段19周,每周吸收热量保持10000千卡,体重按减少至75千克。第54页,共173页,2023年,2月20日,星期一运动t=24(每周跳舞8小时或自行车10小时),14周即可。2)第二阶段增加运动的减肥计划根据资料每小时每千克体重消耗的热量(千卡):
跑步跳舞乒乓自行车(中速)游泳(50米/分)7.03.04.42.57.9t~每周运动时间(小时)基本模型第55页,共173页,2023年,2月20日,星期一3)达到目标体重75千克后维持不变的方案每周吸收热量c(k)保持某常数C,使体重w不变不运动运动(内容同前)第56页,共173页,2023年,2月20日,星期一2007年全国大学生数学建模A题
中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。2007年初发布的《国家人口发展战略研究报告》(附录1)还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。附录2就是从《中国人口统计年鉴》上收集到的部分数据。
试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。
附录1《国家人口发展战略研究报告》
附录2
人口数据(《中国人口统计年鉴》中的部分数据)及其说明
第57页,共173页,2023年,2月20日,星期一人口预测是国家工作中的重点,关系着国家的发展方向和命运。我国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。根据已有数据,运用数学建模的方法,对我国人口做出分析和预测是一个重要问题。近年来我国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着我国人口的增长。2007年初发布的《国家人口发展战略研究报告》对此做出了进一步的分析。从我国的实际情况和人口增长的上述特点出发,参考相关数据,建立我国人口增长的数学模型,并由此对我国人口增长的中短期和长期趋势做出预测;特别注意指出模型中的优点与不足之处。1.问题重述第58页,共173页,2023年,2月20日,星期一2.问题分析一个社会(国家、省市、地区)人口的变化和随时间的发展过程,是由很多因素决定的,社会制度、自然环境、生活水平、科学文化水平、战争、自然灾害和移民等等,都能严重地影响社会人口的发展过程。然而,婴儿的出生、人口的死亡、居民的迁移却是决定该社会人口变化的直接原因,近年来我国人口发展出现的一些新特点,如老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,都直接或间接地通过这三个现象表现出来。综合考虑这些因素成为构建符合我国国情的人口增长模型关键。建立模型对人口发展过程进行定量预测,就是根据现有的人口统计资料和原始数据,从当前实际的人口状况出发,并对未来的人口发展过程,提出合理的控制要求和假定,应用科学的方法,预测出未来几年、几十年甚至上百年的人口发展趋势,包括人口总数、人口的性别、年龄和城乡结构,人口出生、死亡和自然增长率的变化以及在未来的人口构成中劳力和抚养水平及老化水平等。
第59页,共173页,2023年,2月20日,星期一3.模型假设针对本问题,建立如下合理的假设:
题中所给数据能反映我国人口变化的基本情况;
一些重大事件,如战争、自然灾害等对人口预测的影响暂不考虑;所给数据都是年末数据,也即下一年年初数据,如2001年总人口实质上也表示2002年初的总人口;今年所统计的i岁的人口在下一年年初均为i+1岁;生育模式不随时间变化。
第60页,共173页,2023年,2月20日,星期一4.符号说明第61页,共173页,2023年,2月20日,星期一5.模型建立与求解5.1.数据预处理题中所给5年我国人口1%调查数据是对人口的抽样调查数据,由于数据的不完备性,并不能由它来估计当时的全国总人口数。但基于抽样调查的等概率性,可以认为它所反应的市、镇、乡三个地区的人口比例及男女比例是与实际较为接近的。从《中国人口统计年鉴2006》[1],可以得到2001~2005年具体的全国总人口数。进而可以得到各部分人口数。所得数据见表1。
例:第62页,共173页,2023年,2月20日,星期一第63页,共173页,2023年,2月20日,星期一5.2.模型一:基于人口迁移的Logistic阻滞增长模型
第64页,共173页,2023年,2月20日,星期一第65页,共173页,2023年,2月20日,星期一第66页,共173页,2023年,2月20日,星期一第67页,共173页,2023年,2月20日,星期一第68页,共173页,2023年,2月20日,星期一第69页,共173页,2023年,2月20日,星期一第70页,共173页,2023年,2月20日,星期一第71页,共173页,2023年,2月20日,星期一5.3.模型二:离散人口发展方程模型
第72页,共173页,2023年,2月20日,星期一第73页,共173页,2023年,2月20日,星期一第74页,共173页,2023年,2月20日,星期一第75页,共173页,2023年,2月20日,星期一第76页,共173页,2023年,2月20日,星期一第77页,共173页,2023年,2月20日,星期一第78页,共173页,2023年,2月20日,星期一第79页,共173页,2023年,2月20日,星期一第80页,共173页,2023年,2月20日,星期一第81页,共173页,2023年,2月20日,星期一第82页,共173页,2023年,2月20日,星期一第83页,共173页,2023年,2月20日,星期一第84页,共173页,2023年,2月20日,星期一第85页,共173页,2023年,2月20日,星期一第86页,共173页,2023年,2月20日,星期一第87页,共173页,2023年,2月20日,星期一第88页,共173页,2023年,2月20日,星期一第89页,共173页,2023年,2月20日,星期一第90页,共173页,2023年,2月20日,星期一第91页,共173页,2023年,2月20日,星期一第92页,共173页,2023年,2月20日,星期一第93页,共173页,2023年,2月20日,星期一第94页,共173页,2023年,2月20日,星期一第95页,共173页,2023年,2月20日,星期一●
Malthus模型设xn是某人类群体在第n个时间段(例如年)末时的总数,若在单位时间段内人口相对增长率为r(出生率与死亡率之差),那么人口增长数与原人口数成正比,从而xn+1=
xn
+rxn即
xn+1
=axn其中a=r+1.差分形式的人口增长模型第96页,共173页,2023年,2月20日,星期一这是一个如下线性映射的迭代
f(x)=ax从而
xn=axn-1=a2xn-2=…=anx0
Malthus的结论:人口增长呈几何级数
约35年增加一倍,与1700-1961年世界人口统计结果一致与近年统计结果有误差,由a>1,xn趋向无穷,模型在人口长期预测方面必定是失效的.差分形式的人口增长模型第97页,共173页,2023年,2月20日,星期一离散形式的阻滞增长模型连续形式的阻滞增长模型(Logistic模型)t,xN,x=N是稳定平衡点(与r大小无关)离散形式x(t)~某种群t时刻的数量(人口)yk~某种群第k代的数量(人口)若yk=N,则yk+1,yk+2,…=N讨论平衡点的稳定性,即k,
ykN?y*=N是平衡点第98页,共173页,2023年,2月20日,星期一离散形式阻滞增长模型的平衡点及其稳定性一阶(非线性)差分方程(1)的平衡点y*=N讨论x*的稳定性变量代换(2)的平衡点第99页,共173页,2023年,2月20日,星期一(1)的平衡点x*——代数方程x=f(x)的根稳定性判断(1)的近似线性方程x*也是(2)的平衡点x*是(2)和(1)的稳定平衡点x*是(2)和(1)的不稳定平衡点补充知识一阶非线性差分方程的平衡点及稳定性第100页,共173页,2023年,2月20日,星期一01的平衡点及其稳定性平衡点稳定性x*
稳定x*不稳定另一平衡点为x=0不稳定第101页,共173页,2023年,2月20日,星期一01/2101的平衡点及其稳定性第102页,共173页,2023年,2月20日,星期一初值x0=0.2数值计算结果b<3,xb=3.3,x两个极限点b=3.45,x4个极限点b=3.55,x8个极限点0.41181000.4118990.4118980.4118970.4118960.4118950.4118940.4118930.4118920.4118910.379630.336620.272010.20000b=1.7k0.61540.61540.61540.61540.61540.61540.61540.61540.61540.61540.60490.63170.41600.2000b=2.60.82360.47940.82360.47940.82360.47940.82360.47940.82360.47940.48200.82240.52800.2000b=3.30.84690.43270.85300.44740.84690.43270.85300.44740.84690.43270.43220.85320.55200.2000b=3.450.81270.35480.88740.50600.82780.37030.88170.54050.81270.35480.39870.87110.56800.2000b=3.55第103页,共173页,2023年,2月20日,星期一倍周期收敛——x*不稳定情况的进一步讨论单周期不收敛2倍周期收敛(*)的平衡点x*不稳定,研究x1*,x2*的稳定性第104页,共173页,2023年,2月20日,星期一倍周期收敛的稳定性x1*x2*x*b=3.4y=f(2)(x)y=xx0第105页,共173页,2023年,2月20日,星期一倍周期收敛的进一步讨论出现4个收敛子序列x4k,x4k+1,x4k+2,x4k+3平衡点及其稳定性需研究时有4个稳定平衡点2n倍周期收敛,n=1,2,…bn~2n倍周期收敛的上界b0=3,b1=3.449,b2=3.544,…n,bn3.57x1*,x2*(及x*)不稳定b>3.57,不存在任何收敛子序列混沌现象4倍周期收敛第106页,共173页,2023年,2月20日,星期一的收敛、分岔及混沌现象b第107页,共173页,2023年,2月20日,星期一2.浑沌与遍历性当c*<a<4时,Logistic映射进入浑沌区域.反映出的是:■遍历性:点x0的轨道不趋向任何稳定的周期轨道,它的轨道在(0,1)(或其中某些区间)内的任何一个子区间(a,b)内都会出现无数次.这是浑沌的
■敏感性:
轨道表现出对初始条件的强烈敏感性,即不同初始值,即使它们离得非常近,它们的轨道也终将以某种方式分离.■存在周期小窗口浑沌区域内某些地方仍有倍周期分叉,例如a=3.835附近第108页,共173页,2023年,2月20日,星期一■
Feigenbaum常数比值(ck-ck-1)/(ck+1-ck)在k趋于无穷时,趋于常数
q=4.6692016这常数的意义在于普适性,例如周期3窗口也适用,还适用其他映射任务:验证遍历性、敏感性周期3窗口的分叉、(结合Feigenbaum常数
)五.图象方法●蛛网迭代在以xn为横坐标、xn+1为纵坐标的第一象限作抛物线弧:
xn+1=a
xn(1-xn)第109页,共173页,2023年,2月20日,星期一■
作图的过程第110页,共173页,2023年,2月20日,星期一
任取(0,1)中的点x0,可以通过作图来取得迭代的数值序列{xn},从而也通过图象直观地看出由x0出发的轨道的变化.这作图的过程颇象蜘蛛织网,故称为蛛网迭代.
第111页,共173页,2023年,2月20日,星期一■
1<a<3从(0,1)中任何初值出发的轨道趋向不动点(周期1点)第112页,共173页,2023年,2月20日,星期一
■3<a<61/2+1
从任何初值出发的轨道趋向周期2点第113页,共173页,2023年,2月20日,星期一■61/2+1<a<
3.54409035从任何初值出发的轨道趋向周期4点第114页,共173页,2023年,2月20日,星期一■a=3.58轨道进入浑沌状态第115页,共173页,2023年,2月20日,星期一■a=4轨道的浑沌性表现充分第116页,共173页,2023年,2月20日,星期一连续形式的人口增长模型马尔萨斯(Malthus)在分析人口出生与死亡情况的资料后发现,人口净增长率r基本上是一常数,(r=b-d,b为出生率,d为死亡率),即:
或(3.1)
(3.2)
(3.1)的解为:其中N0=N(t0)为初始时刻t0时的种群数。
马尔萨斯模型的一个显著特点:种群数量翻一番所需的时间是固定的。令种群数量翻一番所需的时间为T,则有:故第117页,共173页,2023年,2月20日,星期一第118页,共173页,2023年,2月20日,星期一模型检验
比较历年的人口统计资料,可发现人口增长的实际情况与马尔萨斯模型的预报结果基本相符,例如,1961年世界人口数为30.6(即3.06×109),人口增长率约为2%,人口数大约每35年增加一倍。检查1700年至1961的260年人口实际数量,发现两者几乎完全一致,且按马氏模型计算,人口数量每34.6年增加一倍,两者也几乎相同。模型预测
几何级数的增长Malthus模型实际上只有在群体总数不太大时才合理,到总数增大时,生物群体的各成员之间由于有限的生存空间,有限的自然资源及食物等原因,就可能发生生存竞争等现象。所以Malthus模型假设的人口净增长率不可能始终保持常数,它应当与人口数量有关。第119页,共173页,2023年,2月20日,星期一模型2Logistic模型人口净增长率应当与人口数量有关,即:r=r(N)
从而有:(3.7)r(N)是未知函数,但根据实际背景,它无法用拟合方法来求。为了得出一个有实际意义的模型,我们不妨采用一下工程师原则。工程师们在建立实际问题的数学模型时,总是采用尽可能简单的方法。r(N)最简单的形式是常数,此时得到的就是马尔萨斯模型。对马尔萨斯模型的最简单的改进就是引进一次项(竞争项)此时得到微分方程:或(3.8)(3.8)被称为Logistic模型或生物总数增长的统计筹算律,是由荷兰数学生物学家弗赫斯特(Verhulst)首先提出的。一次项系数是负的,因为当种群数量很大时,会对自身增大产生抑制性,故一次项又被称为竞争项。(3.8)可改写成:
(3.9)
(3.9)式还有另一解释,由于空间和资源都是有限的,不可能供养无限增长的种群个体,当种群数量过多时,由于人均资源占有率的下降及环境恶化、疾病增多等原因,出生率将降低而死亡率却会提高。设环境能供养的种群数量的上界为K(近似地将K看成常数),N表示当前的种群数量,K-N恰为环境还能供养的种群数量,(3.9)指出,种群增长率与两者的乘积成正比,正好符合统计规律,得到了实验结果的支持,这就是(3.9)也被称为统计筹算律的原因。第120页,共173页,2023年,2月20日,星期一图3-5对(3.9)分离变量:两边积分并整理得:令N(0)=N0,求得:故(3.9)的满足初始条件N(0)=N0的解为:(3.10)易见:N(0)=N0
,N(t)的图形请看图3.5第121页,共173页,2023年,2月20日,星期一模型检验
用Logistic模型来描述种群增长的规律效果如何呢?1945年克朗皮克(Crombic)做了一个人工饲养小谷虫的实验,数学生物学家高斯(E·F·Gauss)也做了一个原生物草履虫实验,实验结果都和Logistic曲线十分吻合。
大量实验资料表明用Logistic模型来描述种群的增长,效果还是相当不错的。例如,高斯把5只草履虫放进一个盛有0.5cm3营养液的小试管,他发现,开始时草履虫以每天230.9%的速率增长,此后增长速度不断减慢,到第五天达到最大量375个,实验数据与r=2.309,a=0.006157,N(0)=5的Logistic曲线:
几乎完全吻合,见图3.6。
图3-6第122页,共173页,2023年,2月20日,星期一Malthus模型和Logistic模型的总结
Malthus模型和Logistic模型均为对微分方程(3.7)所作的模拟近似方程。前一模型假设了种群增长率r为一常数,(r被称为该种群的内禀增长率)。后一模型则假设环境只能供养一定数量的种群,从而引入了一个竞争项。
用模拟近似法建立微分方程来研究实际问题时必须对求得的解进行检验,看其是否与实际情况相符或基本相符。相符性越好则模拟得越好,否则就得找出不相符的主要原因,对模型进行修改。
Malthus模型与Logistic模型虽然都是为了研究种群数量的增长情况而建立的,但它们也可用来研究其他实际问题,只要这些实际问题的数学模型有相同的微分方程即可,下面我们来看两个较为有趣的实例。第123页,共173页,2023年,2月20日,星期一历史背景:例5
赝品的鉴定在第二次世界大战比利时解放以后,荷兰野战军保安机关开始搜捕纳粹同谋犯。他们从一家曾向纳粹德国出卖过艺术品的公司中发现线索,于1945年5月29日以通敌罪逮捕了三流画家范·梅格伦(H·A·Vanmeegren),此人曾将17世纪荷兰名画家扬·弗米尔(JanVeermeer)的油画“捉奸”等卖给纳粹德国戈林的中间人。可是,范·梅格伦在同年7月12日在牢里宣称:他从未把“捉奸”卖给戈林,而且他还说,这一幅画和众所周知的油画“在埃牟斯的门徒”以及其他四幅冒充弗米尔的油画和两幅德胡斯(17世纪荷兰画家)的油画,都是他自己的作品,这件事在当时震惊了全世界,为了证明自己是一个伪造者,他在监狱里开始伪造弗米尔的油画“耶稣在门徒们中间”,当这项工作接近完成时,范·梅格伦获悉自己的通敌罪已被改为伪造罪,因此他拒绝将这幅画变陈,以免留下罪证。为了审理这一案件,法庭组织了一个由著名化学家、物理学家和艺术史学家组成的国际专门小组查究这一事件。他们用X射线检验画布上是否曾经有过别的画。此外,他们分析了油彩中的拌料(色粉),检验油画中有没有历经岁月的迹象。科学家们终于在其中的几幅画中发现了现代颜料钴兰的痕迹,还在几幅画中检验出了20世纪初才发明的酚醛类人工树脂。根据这些证据,范·梅格伦于1947年10月12日被宣告犯有伪造罪,被判刑一年。可是他在监狱中只待了两个多月就因心脏病发作,于1947年12月30日死去。
然而,事情到此并未结束,许多人还是不肯相信著名的“在埃牟斯的门徒”是范·梅格伦伪造的。事实上,在此之前这幅画已经被文物鉴定家认定为真迹,并以17万美元的高价被伦布兰特学会买下。专家小组对于怀疑者的回答是:由于范·梅格伦曾因他在艺术界中没有地位而十分懊恼,他下决心绘制“在埃牟斯的门徒”,来证明他高于三流画家。当创造出这样的杰作后,他的志气消退了。而且,当他看到这幅“在埃牟斯的门徒”多么容易卖掉以后,他在炮制后来的伪制品时就不太用心了。这种解释不能使怀疑者感到满意,他们要求完全科学地、确定地证明“在埃牟斯的门徒”的确是一个伪造品。这一问题一直拖了20年,直到1967年,才被卡内基·梅伦(Carnegie-Mellon)大学的科学家们基本上解决。第124页,共173页,2023年,2月20日,星期一原理与模型测定油画和其他岩石类材料的年龄的关键是本世纪初发现的放射性现象。放射性现象:著名物理学家卢瑟夫在本世纪初发现,某些“放射性”元素的原子是不稳定的,并且在已知的一段时间内,有一定比例的原子自然蜕变而形成新元素的原子,且物质的放射性与所存在的物质的原子数成正比。用N(t)表示时间t时存在的原子数,则:常数λ是正的,称为该物质的衰变常数用λ来计算半衰期T:与负增长的Malthus模型完全一样其解为:令则有:许多物质的半衰期已被测定,如碳14,其T=5568;轴238,其T=45亿年。第125页,共173页,2023年,2月20日,星期一与本问题相关的其他知识:
(1)艺术家们应用白铅作为颜料之一,已达两千年以上。白铅中含有微量的放射铅210,白铅是从铅矿中提炼出来的,而铅又属于铀系.
(2)地壳里几乎所有的岩石中均含有微量的铀。一方面,铀系中的各种放射性物质均在不断衰减,而另一方面,铀又不断地衰减,补充着其后继元素。从而,各种放射性物质(除铀以外)在岩石中处于放射性平衡中。根据世界各地抽样测量的资料,地壳中的铀在铀系中所占平均重量比约为百万分之2.7(一般含量极微)。各地采集的岩石中铀的含量差异很大,但从未发现含量高于2—3%的。
(3)从铅矿中提炼铅时,铅210与铅206一起被作为铅留下,而其余物质则有90—95%被留在矿渣里,因而打破了原有的放射性平衡。第126页,共173页,2023年,2月20日,星期一简化假定:本问题建模是为了鉴定几幅不超过300年的古画,为了使模型尽可能简单,可作如下假设:
(1)由于镭的半衰期为1600年,经过300年左右,应用微分方程方法不难计算出白铅中的镭至少还有原量的90%,故可以假定,每克白铅中的镭在每分钟里的分解数是一个常数。
(2)铅210的衰变为:铅210T=22年钋210铅206T=138天若画为真品,颜料应有300年左右或300年以上的历史,容易证明:每克白铅中钋210的分解数等于铅210的分解数(相差极微,已无法区别)。可用前者代替后者,因钋的半衰期较短,易于测量。第127页,共173页,2023年,2月20日,星期一建模:
(1)记提炼白铅的时刻为t=0,当时每克白铅中铅210的分子数为y0,由于提炼前岩石中的铀系是处于放射性平衡的,故铀与铅的单位时间分解数相同。由此容易推算出每克白铅中铅210每分钟分解数不能大于30000个,否则铀的含量将超过4%,而这是不可能的。因为:若则(个)这些铀约重(克)即每克白铅约含0.04克铀,含量为4%以上确定了每克白铅中铅分解数的上界,若画上的铅分解数大于该值,说明画是赝品;但若是小于不能断定画一定是真品。第128页,共173页,2023年,2月20日,星期一
(2)设t时刻1克白铅中铅210含量为y(t),而镭的单位时间分解数为r(常数),则y(t)满足微分方程:
由此解得:故:
若此画是真品,t-t0≈300(年)。画中每克白铅所含铅210目前的分解数λy(t)及目前镭的分解数r均可用仪器测出,从而可求出λy0的近似值,并利用(1)判断这样的分解数是否合理。若判断结果为不合理,则可以确定此画必是赝品,但反之不一定说明画是真品(因为估计仍是十分保守的且只能证明画的“年龄”)。第129页,共173页,2023年,2月20日,星期一Carnegie-Mellon大学的科学家们利用上述模型对部分有疑问的油画作了鉴定,测得数据如下(见表3-1)。油画名称210分解数(个/分)镭226分解数(个/分)1、在埃牟斯的门徒
8.50.82、濯足12.60.263、看乐谱的女人10.30.34、演奏曼陀琳的女人8.20.175、花边织工1.51.46、笑女5.26.0计算λy0
(个/分)980501571301273401022501274.8-10181表3-1对“在埃牟斯的门徒”,λy0≈98050(个/每克每分钟),它必定是一幅伪造品。类似可以判定(2),(3),(4)也是赝品。而(5)和(6)都不会是几十年内伪制品,因为放射性物质已处于接近平衡的状态,这样的平衡不可能发生在十九世纪和二十世纪的任何作品中。判定结果:第130页,共173页,2023年,2月20日,星期一利用放射原理,还可以对其他文物的年代进行测定。例如对有机物(动、植物)遗体,考古学上目前流行的测定方法是放射性碳14测定法,这种方法具有较高的精确度,其基本原理是:由于大气层受到宇宙线的连续照射,空气中含有微量的中微子,它们和空气中的氮结合,形成放射性碳14(C14)。有机物存活时,它们通过新陈代谢与外界进行物质交换,使体内的C14处于放射性平衡中。一旦有机物死亡,新陈代谢终止,放射性平衡即被破坏。因而,通过对比测定,可以估计出它们生存的年代。例如,1950年在巴比伦发现一根刻有Hammurabi王朝字样的木炭,经测定,其C14衰减数为4.09个/每克每分钟,而新砍伐烧成的木炭中C14衰减数为6.68个/每克每分钟,C14的半衰期为5568年,由此可以推算出该王朝约存在于3900-4000年前。第131页,共173页,2023年,2月20日,星期一例6
新产品的推广
经济学家和社会学家一直很关心新产品的推销速度问题。怎样建立一个数学模型来描述它,并由此析出一些有用的结果以指导生产呢?以下是第二次世界大战后日本家电业界建立的电饭包销售模型。记比例系数为k,则x(t)满足:
此方程即Logistic模型,解为:还有两个奇解:x=0和x=K
对x(t)求一阶、两阶导数:
设需求量有一个上界,并记此上界为K,记t时刻已销售出的电饭包数量为x(t),则尚未使用的人数大致为K-x(t),于是由统计筹算律:第132页,共173页,2023年,2月20日,星期一容易看出,x’(t)>0,即x(t)单调增加。由x’’(t0)=0,可以得出=1,此时,。当t<t0时,x’’(t)>0,x’(t)单调增加,而当t>t0时,x’’(t)<0,x’(t)单调减小。实际调查表明,销售曲线与Logistic曲线十分接近,尤其是在销售后期,两者几乎完全吻合。在销出量小于最大需求量的一半时,销售速度是不断增大的,销出量达到最大需求量的一半时,该产品最为畅销,接着销售速度将开始下降。所以初期应采取小批量生产并加以广告宣传;从有20%用户到有80%用户这段时期,应该大批量生产;后期则应适时转产,这样做可以取得较高的经济效果。第133页,共173页,2023年,2月20日,星期一观众厅地面设计1问题的提出在影视厅或报告厅,经常会为前边观众遮挡住自己的视线而苦恼。显然,场内的观众都在朝台上看,如果场内地面不做成前低后高的坡度模式,那么前边观众必然会遮挡后面观众的视线。试建立数学模型设计良好的报告厅地面坡度曲线。第134页,共173页,2023年,2月20日,星期一建立坐标系oo—处在台上的设计视点bb—第一排观众的眼睛到x轴的垂直距离xyadda—第一排观众与设计视点的水平距离d—相邻两排的排距—视线升高标准x—表示任一排与设计视点的水平距离求任一排x与设计视点o的竖直距离函数使此曲线满足视线的无遮挡要求。问题第135页,共173页,2023年,2月20日,星期一2问题的假设观众厅地面的纵剖面图一致,只需求中轴线上地面的起伏曲线即可。同一排的座位在同一等高线上。每个坐在座位上的观众的眼睛与地面的距离相等。每个坐在座位上的观众的头与地面的距离也相等。所求曲线只要使观众的视线从紧邻的前一个座位的人的头顶擦过即可。第136页,共173页,2023年,2月20日,星期一3建模设眼睛升起曲线应满足微分方程初始条件obxyadd1)从第一排起,观众眼睛与o点的连线的斜率随排数的增加而增加,而眼睛升起曲线显然与这些直线皆相交,故此升起曲线是凹的。第137页,共173页,2023年,2月20日,星期一2)选择某排和相邻排oyx-dC(x,0)C2(x+d,0)MM2M1xN1ABN相似于D第138页,共173页,2023年,2月20日,星期一再计算相似于第139页,共173页,2023年,2月20日,星期一4模型求解微分不等式(比较定理)设函数定义在某个区域上,且满足1)在D上满足存在唯一性定理的条件;2)在D上有不等式则初值问题与的解在它们共同存在区间上满足第140页,共173页,2023年,2月20日,星期一第141页,共173页,2023年,2月20日,星期一所求曲线的近似曲线方程(折衷法)折衷法第142页,共173页,2023年,2月20日,星期一5总结与讨论有时只需求近似解。方法利用微分不等式建模;模型讨论obxyadd1)视点移动时升起曲线如何求得?2)怎样减少地面的坡度?调整参数、相邻排错位。3)衡量经济的指标?座位尽量多、升起曲线占据的空间尽量少等。第143页,共173页,2023年,2月20日,星期一碳定年代法考古、地质学等方面的专家常用14C测定法(通常称碳定年代法)来估计文物或化石的年代。
第144页,共173页,2023年,2月20日,星期一
14C的蜕变规律14C是一种由宇宙射线不断轰击大气层,使大气层产生中子,中子与氮气作用生成的具有放射性的物质。这种放射性碳可氧化成二氧化碳,二氧化碳被植物所吸收,而植物又作为动物的食物,于是放射性碳被带到各种动植物体内。14C是放射性的,无论在空气中还是在生物体内他都在不断蜕变,这种蜕变规律我们可以求出来。通常假定其蜕变速度与该时刻的存余量成正比。第145页,共173页,2023年,2月20日,星期一设在时刻t(年),生物体中14C的存量为x(t),生物体的死亡时间记为t0=0,此时14C含量为x0,由假设,初值问题
(1.1)的解为(1.2)其中,为常数,k前面的符号表示14C的存量是递减的。(1.2)式表明14C是按指数递减的,而常数k可由半衰期确定,
第146页,共173页,2023年,2月20日,星期一若14C的半衰期为T,则有
(1.3)将(1.3)代入(1.2)得
即有(1.4)第147页,共173页,2023年,2月20日,星期一碳定年代法的根据活着的生物通过新陈代谢不断摄取14C,因而他们体内的14C与空气中的14C含量相同,而生物死亡之后,停止摄取14C,因而尸体内的14C由于不断蜕变而不断减少。碳定年代法就是根据生物体死亡之后体内14C蜕变减少量的变化情况来判断生物的死亡时间的。第148页,共173页,2023年,2月20日,星期一碳定年代法的计算由(1.4)解得(1.5)由于x(0),x(t)不便于测量,我们可把(1.5)作如下修改.对(1.2)式两边求导数,得(1.6)而(1.7)第149页,共173页,2023年,2月20日,星期一(1.6)和(1.7)两式相除,得将上式代入(1.5),得
(1.8)这样由(1.8)可知,只要知道生物体在死亡时体内14C的蜕变速度和现在时刻t的蜕变速度,就可以求得生物体的死亡时间了,在实际计算上,都假定现代生物体中14C的蜕变速度与生物体死亡时代生物体中14C的蜕变速度相同。第150页,共173页,2023年,2月20日,星期一马王堆一号墓年代的确定马王堆一号墓于1972年8月出土,其时测得出土的木炭标本的C14平均原子蜕变数为29.78/s,而新砍伐木头烧成的木炭中C14平均原子蜕变数为38.37/s,又知C14的半衰期为5568年,这样,我们可以把,,T=5568年代入(1.8),得这样就估算出马王堆一号墓大约是在2000多年前。第151页,共173页,2023年,2月20日,星期一两个注记(1)马王堆中的古代科技之谜素纱蝉衣:两件轻薄的衣服,丝绸,极轻且两千年不腐,南京云锦研究所接受国家科技攻关,用了二十年时间,于1990年成功研制出类似素纱蝉衣的复制品,但该复制品比汉代的还重50克,已不可能再轻了。女尸千年不腐:病理知识:女尸解剖显示患有非常严重的冠心病;肺部有肺结核的钙化,肺部钙化是肺结核痊愈后的表现。2000年后的今天,要想控制肺结核,除自身的第152页,共173页,2023年,2月20日,星期一抵抗力要强外,还要有好的营养,要想痊愈是很困难的。两处胆结石,其一在胆总管,有蚕豆大,胆道被堵得水泄不通。三种寄生虫,其中竟有血吸虫,其症状应为腹胀如鼓,骨瘦如柴,但该女子皮下脂肪异常丰满,显然血吸虫被有效的控制住了。该西汉贵妇生前病魔缠身,但从其遗体上未发现长期卧床养病的迹象。一个同时患有这么多疾病的人,能够长期稳定控制病情,在今天也是一个奇迹,说明汉代医术已达到了相当高的水平。。。。。。。。。。第153页,共173页,2023年,2月20日,星期一(2)碳定年代法的不足现在,14C年代测定法已受到怀疑,在2500----10000年前这段时间中与其他断代法的结果有差异。1966年,耶鲁实验室的MinzeStuiver和加利福尼亚大学圣地亚哥分校的HansE.Suess在一份报告中指出了这一时期使14C年代测定产生误差的根本原因。在那个年代,宇宙射线的放射强度减弱了,偏差的峰值发生在大约6000年以前。第154页,共173页,2023年,2月20日,星期一这两位研究人员的结论出自对Brist/econe松树所作的14C年代测定的结果,因为这种松树同时还提供了精确的年轮断代。他们提出了一个很成功的误差公式,用来校正根据14C断代定出的2300----6000年前这期间的年代:真正的年代=14C年×1.4—900。第155页,共173页,2023年,2月20日,星期一
在研究人口或种群数量的实际增长情况时,有时采用离散化的时间变量更为方便。例如,有些种群具有相对较为固定的繁殖期,按时段统计种群数量更接近种群的实际增长方式。人口增长虽无这种特征,但人口普查不可能连续统计,任何方式的普查都只能得到一些离散时刻的人口总量(指较大范围的普查)。这样,如何建立人口问题的离散模型的问题十分自然地提了出来。第156页,共173页,2023年,2月20日,星期一对于k阶差分方程F(n;xn,xn+1,…,xn+k)=0(3-6)若有xn=x(n),满足F(n;x(n),x(n+1),…,x(n+k))=0,则称xn=x(n)是差分方程(3-6)的解,包含个任意常数的解称为(3-6)的通解,x0,x1,…,xk-1为已知时称为(3-6)的初始条件,通解中的任意常数都由初始条件确定后的解称为(3-6)的特解.若x0,x1,…,xk-1已知,则形如xn+k=g(n;xn,xn+1,…,xn+k-1)的差分方程的解可以在计算机上实现.第157页,共173页,2023年,2月20日,星期一若有常数a是差分方程(3-6)的解,即F(n;a,a,…,a)=0,则称a是差分方程(3-6)的平衡点.
又对差分方程(3-6)的任意由初始条件确定的解xn=x(n)都有xn→a(n→∞),则称这个平衡点a是稳定的.
一阶常系数线性差分方程
xn+1+axn=b,(其中a,b为常数,且a≠-1,0)的通解为xn=C(-a)n+b/(a+1)
易知b/(a+1)是其平衡点,由上式知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基于2024年度市场趋势分析的服务置换股权合同2篇
- 2024年度股权转让合同及相关服务
- 2024年度工程设计进度合同协议3篇
- 有利于企业的劳动合同范本
- 二零二四年度大型港口码头扩建工程设计与施工总承包合同2篇
- 基于虚拟现实技术的房地产展示平台2024年度开发合同
- 2024广东省茶叶订购合同范本
- 2024年度场地出租合同(个人)6篇
- 劳务聘用合同江苏省2篇
- 二零二四年度二手通信设备采购合同
- 静脉用药安全输注药护专家指引
- 人教版初中化学复习课:《化学用语》专题复习 说课稿
- 合同Amazon店铺代运营协议
- 大工15春《水利工程实验(二)》实验报告
- UN-美制螺纹及尺寸表
- 竹、木(复合)地板工程施工工艺
- 2023《中华人民共和国合同法》
- 泰安商业银行开办外汇业务的可行性分析
- 新课标背景下统编《道德与法治》的大单元教学
- 新视野大学英语(第四版)读写教程1(思政智慧版) 课件 Unit 4 Social media matters Section A
- 人教版高中物理必修三 (电荷)课件教学
评论
0/150
提交评论