




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,满足约束条件则的最大值为()A. B. C. D.2.对于平面、、和直线、、、,下列命题中真命题是()A.若,则B.若,则C.若则D.若,则3.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.8 B.6 C.4 D.24.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是()A.甲的极差是29 B.甲的中位数是24C.甲罚球命中率比乙高 D.乙的众数是215.在极坐标系中,直线被圆截得的弦长为()A. B.2 C. D.6.函数的大致图象是()A. B.C. D.7.过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为()A. B. C. D.8.若复数满足,其中为虚数单位,则在复平面上复数对应的点的坐标为()A. B. C. D.9.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A. B. C. D.10.复数(为虚数单位),则的共轭复数的虚部是()A. B. C. D.11.一个正方形花圃,被分为5份A、B、C、D、E,种植红、黄、蓝、绿4种颜色不同的花,要求相邻两部分种植不同颜色的花,则不同的种植方法有().A.24种 B.48种 C.84种 D.96种12.已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为A.34B.C.74D.二、填空题:本题共4小题,每小题5分,共20分。13.直线:,:.则“”是“与相交”的__________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)14.在的二项展开式中,常数项的值为__________15.从甲,乙,丙,丁4个人中随机选取两人,则甲、乙两人中有且只一个被选中的概率为__________.16.已知随机变量服从正态分布X∼N(2,σ2),若P(X<a)=0.32,则P(a≤X<4-a)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)把圆分成个扇形,设用4种颜色给这些扇形染色,每个扇形恰染一种颜色,并且要求相邻扇形的颜色互不相同,设共有种方法.(1)写出,的值;(2)猜想,并用数学归纳法证明.18.(12分)如图,在三棱柱中,,,点在平而内的射影为(1)证明:四边形为矩形;(2)分别为与的中点,点在线段上,已知平面,求的值.(3)求平面与平面所成锐二面角的余弦值19.(12分)2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?对服务好评对服务不满意合计对商品好评140对商品不满意10合计200(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.①求随机变量X的分布列;②求X的数学期望和方差.附:K2P(K2≥k)50.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.82820.(12分)如图,平面,在中,,,交于点,,,,.(1)证明:;(2)求直线与平面所成角的正弦值.21.(12分)己知抛物线:过点(1)求抛物线的方程:(2)设为抛物线的焦点,直线:与抛物线交于,两点,求的面积.22.(10分)设函数.(1)解不等式;(2)求函数的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
作出不等式对应的平面区域,利用目标函数的几何意义,求目标函数的最大值即可.【详解】画出约束条件所表示的平面区域,如图所示,由得到,平移直线,当过A时直线截距最小,最大,由得到,所以的最大值为,故选:C.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.2、C【解析】
若由线面垂直的判定定理知,只有当和为相交线时,才有
错误;
若此时由线面平行的判定定理可知,只有当在平面
外时,才有错误;由面面平行的性质定理:若两平面平行,第三个平面与他们都相交,则交线平行,可判断,若,,,则为真命题,正确;若此时由面面平行的判定定理可知,只有当、为相交线时,才有错误.
故选C.考点:考查直线与直线,直线与平面,平面与平面的位置关系.3、C【解析】试题分析:如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.考点:抛物线的性质.4、B【解析】
通过茎叶图找出甲的最大值及最小值求出极差判断出A对;找出甲中间的两个数,求出这两个数的平均数即数据的中位数,判断出D错;根据图的数据分布,判断出甲的平均值比乙的平均值大,判断出C对.【详解】由茎叶图知甲的最大值为37,最小值为8,所以甲的极差为29,故A对甲中间的两个数为22,24,所以甲的中位数为故B不对甲的命中个数集中在20而乙的命中个数集中在10和20,所以甲的平均数大,故C对乙的数据中出现次数最多的是21,所以D对故选B.【点睛】茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.茎叶图不能直接反映总体的分布情况,这就需要通过茎叶图给出的数据求出数据的数字特征,进一步估计总体情况.5、C【解析】试题分析:将极坐标化为直角坐标可得和,圆心到直线的距离,故,所以应选C.考点:极坐标方程与直角坐标之间的互化.【易错点晴】极坐标和参数方程是高中数学选修内容中的核心内容,也是高考必考的重要考点.解答这类问题时,一定要扎实掌握极坐标与之交坐标之间的关系,并学会运用这一关系进行等价转换.本题在解答时充分利用题设条件,运用将极坐标方程转化为直角坐标方程,最后通过直角坐标中的运算公式求出弦长,从而使问题巧妙获解.6、D【解析】
利用函数的奇偶性排除选项,利用特殊值定义点的位置判断选项即可.【详解】函数是偶函数,排除选项B,当x=2时,f(2)=<0,对应点在第四象限,排除A,C;故选D.【点睛】本题考查函数的图象的判断,考查数形结合以及计算能力.7、A【解析】
直线的方程为,令,得,得到a,b的关系,结合选项求解即可【详解】直线的方程为,令,得.因为,所以,只有选项满足条件.故选:A【点睛】本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.8、C【解析】
利用复数的运算法则、几何意义即可得出.【详解】z=,故选:C.【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.9、B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为,故选B.点睛:(1)解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.(2)三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.10、C【解析】分析:求出复数,得到,即可得到答案.详解:故的共轭复数的虚部是3.故选C.点睛:本题考查复数的乘法运算,复数的共轭复数等,属基础题.11、D【解析】
区域A、C、D两两相邻,共有种不同的种植方法,讨论区域E与区域A种植的花的颜色相同与不同,即可得到结果.【详解】区域A、C、D两两相邻,共有种不同的种植方法,当区域E与区域A种植相同颜色的花时,种植B、E有种不同的种植方法,当区域E与区域A种植不同颜色的花时,种植B、E有种不同的种植方法,∴不同的种植方法有种,故选D【点睛】本题考查排列、组合及简单计数问题,考查分类讨论思想与分析、运算及求解能力,属于中档题.12、D【解析】略视频二、填空题:本题共4小题,每小题5分,共20分。13、必要不充分【解析】分析:先根据直线相交得条件,再根据两个条件关系确定充要性.详解:因为与相交,所以所以“”是“与相交”的必要不充分条件.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.14、15【解析】
写出二项展开式通项,通过得到,从而求得常数项.【详解】二项展开式通项为:当时,常数项为:本题正确结果:【点睛】本题考查二项式定理的应用,属于基础题.15、2【解析】
利用列举法:从甲,乙,丙,丁4个人中随机选取两人,共有6种结果,其中甲乙两人中有且只一个被选取,共4种结果,由古典概型概率公式可得结果.【详解】从甲,乙,丙,丁4个人中随机选取两人,共有(甲乙),(甲丙),(甲丁),(乙丙),(乙丁),(丙丁),6种结果,其中甲乙两人中有且只一个被选取,有(甲丙),(甲丁),(乙丙),(乙丁),共4种结果,故甲、乙两人中有且只一个被选中的概率为46=2【点睛】本题主要考查古典概型概率公式的应用,属于基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式P=mn16、0.36【解析】P(X<a)=0.32,∴P(X>4-a)=0.32,∴P(a<X≤4-a)=1-2P(X<a)=1-2×0.32=0.36.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析【解析】分析:(1)根据题意,得;(2)分析可得,用用数学归纳法证明即可详解:(1)(2).当时,首先,对于第1个扇形,有4种不同的染法,由于第2个扇形的颜色与的颜色不同,所以,对于有3种不同的染法,类似地,对扇形,…,均有3种染法.对于扇形,用与不同的3种颜色染色,但是,这样也包括了它与扇形颜色相同的情况,而扇形与扇形颜色相同的不同染色方法数就是,于是可得猜想当时,左边,右边,所以等式成立假设时,,则时,即时,等式也成立综上点睛:本题考查考查归纳分析能力,考查数学归纳法的应用,属中档题.18、(1)详见解析(2)(3)【解析】
(1)根据投影分析线段长度关系,由此得到长度关系,由此去证明四边形为矩形;(2)通过取中点,作出辅助线,利用线面平行确定点位置,从而完成的计算;(3)建立合适空间直角坐标系,利用向量法求解锐二面角的余弦值.【详解】(1)证明:平面,在平面,在与中,又,,四边形为矩形;(2)取的中点,连结交于,分别为的中点,,,又为的中点,,四边形为平行四边形,即,平面,;(3)如图,以为坐标原点,过分别与平行的直线为轴,轴,为轴,建立如图所示空间直角坐标系,,平面的法向量,,设为平面的法向量得,平面与平面所成锐二面角的余弦值为【点睛】本题考查立体几何的综合应用,难度一般.利用向量方法求解二面角的余弦值时,要注意一个问题:有时候求解出的余弦值是负值,但实际结果却是正值,这里其实我们需要回原图中去观察一下两个面所成的二面角是锐角还是钝角,然后给出判断即可.19、(1)详见解析(2)①详见解析②E(X)=2110【解析】
(1)补充列联表,根据公式计算卡方值,进行判断;(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710,且X的取值可以是0,1,2,3,x符合二项分布,按照二项分布的公式进行计算即可得到相应的概率值;(ⅱ)按照二项分布的期望和方差公式计算即可【详解】(1)由题意可得关于商品和服务评价的2×2列联表:对服务好评对服务不满意合计对商品好评14040180对商品不满意101020合计15050200则K2由于7.407<7.879,则不可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关.(2)(ⅰ)每次购物时,对商品和服务都好评的概率为710且X的取值可以是0,1,2,3,则P(X=0)=(310P(X=2)=C32故X的分布列为X0123P27189441343(ⅱ)由于X~B(3,710),则E(X)=3×710【点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确.20、(1)证明见解析;(2).【解析】
过D作平行线DH,则可得两两垂直,以它们为坐标轴建立空间直角坐标,求出长,写出的坐标.求出相应向量,(1)由,证得垂直;(2)求出平面的法向量,直线与平面所成角的正弦值等于向量和夹角余弦值的绝对值.由向量的数量积运算易求.【详解】(1)过D作平行线DH,以D为原点,DB为x轴,DC为y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年选任总经理协议样本
- 2025年医疗行业股权投资合作策划协议书样本
- 2025年委托培养合同协议
- 2025年工程保密协议规范示例
- 2025年金融公司保密协议范本
- 理赔业务风险培训持续性风险基础知识点归纳
- 理赔业务风险管理跨部门信息传递风险基础知识点归纳
- 人工智能在医疗健康领域的创新应用
- 开发民俗体验的现状及总体形势
- 大寒营销新突破
- 运维管理培训
- 2024年四川乐山中考满分作文《有一束光照亮了我》
- 2025年广东省佛山市南海区中考一模英语试题(原卷版+解析版)
- 部编2024版历史七年级下册期末(全册)复习卷
- 人大代表应聘简历
- 23《海底世界》说课稿- 2023-2024学年统编版语文三年级下册
- 支气管镜术后护理课件
- 《代营业厅》课件
- 梵高星空课件
- 上海工程技术大学第2学期《机械原理》课程期末试卷及答案
- 2024年辅警招聘笔试题库
评论
0/150
提交评论