基于FPGA的SOC系统中的串口设计-设计应用_第1页
基于FPGA的SOC系统中的串口设计-设计应用_第2页
基于FPGA的SOC系统中的串口设计-设计应用_第3页
基于FPGA的SOC系统中的串口设计-设计应用_第4页
基于FPGA的SOC系统中的串口设计-设计应用_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档-下载后可编辑基于FPGA的SOC系统中的串口设计-设计应用1概述在基于FPGA的SOC设计中,常使用串口作为通信接口,但直接用FPGA进行串口通信数据的处理是比较繁杂的,特别是直接使用FPGA进行串口通信的协议的解释和数据打包等处理,将会消耗大量的FPGA硬件资源。

为简化设计,降低硬件资源开销,可以在FPGA中利用IP核实现的嵌入式微处理器来对串口数据进行处理。

本文中的设计采用了XILINX的FPGA,可选用的嵌入式微处理器IP核种类繁多,但基于对硬件资源开销少的考虑,终选用了Picoblaze。

嵌入式微处理器PicoBlaze适用于Spartan-II/E、CoolRunner-II和Virtex系列FPGA,运行速度可达到40MIPS以上,提供49个不同的指令,16个寄存器,256个地址端口,1个可屏蔽的中断。其性能超过了传统的8bit微处理器。嵌入式微处理器Picoblaze的功能、原理见参考文献[1]。

Picoblaze使用灵活,但其缺点是可寻址的存储空间非常有限,因此为满足实际需要本文同时也提出了使用片外SDRAM器件对其存储能力进行扩展的设计方法。

2串口收发接口设计

2.1串口收发接口硬件设计

嵌入式微处理器PicoBlaze本身并不具备串行接口,因此必须在FPGA中设计串口接收和发送模块并通过总线结构与Picoblaze连接。

串口接收和发送模块的设计可采用成熟的IP核。实际设计中采用了XLINX的串口收发IP核,其特点是串口波特率,符号规则都可以灵活地定制,同时具有16字节的接收FIFO和16字节的发送FIFO。

使用Picoblaze和串口收发IP核构成的串口收发系统结构见图1。

在设计中,发送模块、接收模块和标志寄存器分别有不同的地址,Picoblaze通过地址端口对串口收发模块进行访问。设计中的标志寄存器,可用于指示发送模块和接收模块中FIFO的状态,Picoblaze通过查询标志寄存器来完成对串口数据的收发控制。

2.2串口收发接口软件设计

串口发送、接收子程序

Picoblaze通过对标志寄存器的查询,根据FIFO的状态进行操作。串口发送和接收子程序流程见图2。

Picoblaze的编程,类似于汇编语言。

串口发送子程序代码如下:

(1)串口接收子程序

receive:INPUTs0,uartrxflag;查询接收FIFO是否非空ANDs0,01ANDs0,s0JUMPZ,receive;若FIFO为空时继续查询INPUTrxdata,uartrx;若FIFO非空时读取数据RETURN

(2)串口接收子程序

translate:INPUTs0,uarttxflag;查询发送FIFO是否为空ANDs0,01ANDs0,s0JUMPNZ,translate;若发送FIFO非空时继续查询OUTPUTtxdata,uarttx;若发送FIFO为空时写入数据RETURN

协议处理子程序

本文应用中的串口通信,采用应答机制,数据具有一定的帧结构,Picoblaze需要对命令帧进行拆包处理,并根据帧的内容进行相应的操作,然后发送响应帧。

表1通信数据的命令帧结构

表2通信数据的响应帧结构

根据帧格式,Picoblaze对串口数据的处理流程见图3。

以上的Picoblaze程序流程所处理的数据帧结构是较为简单的,当需要处理复杂的通信协议时可以考虑采用多个Picoblaze并行处理。

3存储器接口设计

Picoblaze的优点是资源占用少,使用灵活,但可寻址的地址空间多为256字节,无法满足对大量通信数据进行存储的需要。因此本文中采用了SDRAM器件来对Picoblaze的存储能力进行扩展。

SDRAM器件的管脚分为控制信号、地址和数据三类。通常一个SDRAM中包含几个BANK,每个BANK的存储单元是按行和列寻址的。SDRAM的具体特性见参考文献[3]。

SDRAM在使用时需要专用的控制器来产生满足SDRAM所需的信号。FPGA中SDRAM控制器也有多种IP核可以选用。出于对设计通用性的考虑,本文中采用了一款Altera提供的SDRAM控制器IP核,并增加了必要的设计以满足与Picoblaze的接口要求。SDRAM控制器IP核的功能、原理见参考文献[4]。

对Picoblaze与SDRAM控制器的接口设计有以下几个出发点:

总线匹配

Picoblaze为8位处理器,数据线仅8bit,而SDRAM控制器总线宽度与SDRAM相同,可以为8、16或32bit。因此对于SDRAM控制器的数据Picoblaze必须以字节为单位进行处理。

地址控制

Picoblaze地址线仅8位,无法直接对SDRAM进行寻址。因此Picoblaze对SDRAM的寻址可借鉴先入先出存储器FIFO的设计,即设计专门的地址计数器,通过地址计数器实现对SDRAM的寻址。

时序匹配

Picoblaze的运行速度不超过40MHz,而SDRAM的工作速度通常大于100MHz。因此为了满足SDRAM的时序要求,要增加必要的缓冲机制。

3.1存储器接口硬件设计

Picoblaze与SDRAM存储器接口的硬件原理框图见图4。

控制状态机控制的地址计数器为SDRAM控制器提供地址,同时控制状态机还控制输入数据缓冲区和输出数据缓冲区,并且根据Picoblaze的地址端口数据和读/写使能信号产生SDRAM控制器的命令字。

(1)SDRAM初始化

每次加电或复位后控制状态机执行对SDRAM控制器的初始化操作,设置SDRAM的时间参数和刷新周期等。

(2)数据写入SDRAM

输出数据缓冲区由16×8bit的FIFO构成,当Picoblaze向输出数据缓冲区写入超过8个字节后,通过“半满”信号使控制状态机进入SDRAM的长度为8的突发写模式,在写入完成后控制状态机将地址计数器增加8,以准备好下的写入。

(3)数据读取

数据读取时Picoblaze首先向控制状态机发送读取请求,控制状态机进入SDRAM的长度为1的突发读模式,并将读取的数据写入输入数据缓冲区,此后Picoblaze再由输入数据缓冲区中读取数据。在读取后,地址计数器做相应的增加,以实现先入先出功能。

以上的设计方法适用于需要数据连续写入后再连续读取的场合。

控制状态机状态图见图5。

3.2存储器接口软件设计

由于在SDRAM控制器与Picoblaze之间增加了控制状态机,简化了Picoblaze的程序设计。

(1)数据写入

数据写入时Picoblaze向输出数据缓冲区直接写入数据即可。

(2)数据读取

数据读取时Picoblaze首先向控制状态机发出请求,然后等待输入数据缓冲区的数据准备就续后再读取。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论