




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程是A. B.C. D.2.已知等差数列的公差为2,前项和为,且,则的值为A.11 B.12 C.13 D.143.复数A. B. C. D.4.已知函数,则()A.是偶函数,且在R上是增函数 B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数 D.是奇函数,且在R上是减函数5.(2x-3)1+A.-55 B.-61 C.-63 D.-736.已知双曲线C:x216-yA.6x±y=0 B.C.x±2y=0 D.2x±y=07.刍薨(),中国古代算术中的一种几何形体,《九章算术》中记载“刍薨者,下有褒有广,而上有褒无广.刍,草也.薨,屋盖也.”翻译为“底面有长有宽为矩形,顶部只有长没有宽为一条棱,刍薨字面意思为茅草屋顶”,如图,为一刍薨的三视图,其中正视图为等腰梯形,侧视图为等腰三角形,则搭建它(无底面,不考虑厚度)需要的茅草面积至少为()A.24 B. C.64 D.8.展开式中的系数为()A.15 B.20 C.30 D.359.已知函数,关于的不等式只有两个整数解,则实数的取值范围是()A. B. C. D.10.已知复数,则的共轭复数()A. B. C. D.11.,若,则的值等于()A.B.C.D.12.某三棱锥的三视图如图所示,则该三棱锥的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数z满足|1﹣z|•|1+z|=2,则|z|的最小值为_____.14.甲、乙、丙射击命中目标的概率分别为、、,现在三人同时射击目标,且相互不影响,则目标被击中的概率为__________.15.集合中所有3个元素的子集的元素和为__________.16.圆:在矩阵对应的变换作用下得到了曲线,曲线的矩阵对应的变换作用下得到了曲线,则曲线的方程为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)用分析法证明:;(2)用反证法证明:三个数中,至少有一个大于或等于.18.(12分)已知二阶矩阵A=abcd,矩阵A属于特征值λ1=-1的一个特征向量为α119.(12分)设,函数.(1)若,求曲线在处的切线方程;(2)求函数单调区间(3)若有两个零点,求证:.20.(12分)已知点是椭圆的一个焦点,点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于不同的两点,且(为坐标原点),求直线斜率的取值范围.21.(12分)设函数f(x)=,求函数f(x)的单调区间.22.(10分)某企业有甲、乙两个研发小组,他们研究新产品成功的概率分别为和,现安排甲组研发新产品,乙组研发新产品,设甲、乙两组的研发相互独立.(1)求恰好有一种新产品研发成功的概率;(2)若新产品研发成功,预计企业可获得利润120万元,不成功则会亏损50万元;若新产品研发成功,企业可获得利润100万元,不成功则会亏损40万元,求该企业获利万元的分布列.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由双曲线方程求得,由渐近线方程为求得结果.【详解】由双曲线方程得:,渐近线方程为:本题正确选项:【点睛】本题考查双曲线渐近线的求解,属于基础题.2、C【解析】
利用等差数列通项公式及前n项和公式,即可得到结果.【详解】∵等差数列的公差为2,且,∴∴∴.故选:C【点睛】本题考查了等差数列的通项公式及前n项和公式,考查计算能力,属于基础题.3、C【解析】,故选D.4、D【解析】
根据题意,由函数的解析式可得f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,由指数函数的性质可得y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,据此分析可得答案.【详解】根据题意,f(x)=()x﹣2x,有f(﹣x)=2x﹣()x=﹣f(x),则函数f(x)为奇函数,又由y=()x在R上为减函数,y=2x在R上为增函数,则函数f(x)=()x﹣2x在R上为减函数,故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是掌握函数奇偶性、单调性的判断方法,属于基础题.5、D【解析】
令x=1得到所有系数和,再计算常数项为9,相减得到答案.【详解】令x=1,得(2x-3)1+1x6=-【点睛】本题考查了二项式系数和,常数项的计算,属于常考题型.6、C【解析】
根据双曲线的性质,即可求出。【详解】令x216双曲线C的渐近线方程为x±2y=0,故选C。【点睛】本题主要考查双曲线渐近线方程的求法。7、B【解析】茅草面积即为几何体的侧面积,由题意可知该几何体的侧面为两个全等的等腰梯形和两个全等的等腰三角形.其中,等腰梯形的上底长为4,下底长为8,高为;等腰三角形的底边长为4,高为.故侧面积为.即需要的茅草面积至少为.选B.8、C【解析】
利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得的系数.【详解】根据二项式定理展开式通项为则展开式的通项为则展开式中的项为则展开式中的系数为故选:C【点睛】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.9、C【解析】试题分析:,∴在上单调递增,上单调递减,∴,又∵,,不等式只有两个整数解,∴,即实数的取值范围是故选C.【考点】本题主要考查导数的运用.10、A【解析】
对复数进行化简,然后得到,再求出共轭复数.【详解】因为,所以,所以的共轭复数故选A项.【点睛】本题考查复数的四则运算,共轭复数的概念,属于简单题.11、D【解析】试题分析:考点:函数求导数12、A【解析】
由正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,再利用棱锥的体积公式求解即可.【详解】由三棱锥的正视图和侧视图得三棱锥的高,由俯视图得三棱锥底面积,所以该三棱锥的体积.故选:A【点睛】本题主要考查三视图和棱锥的体积公式,考查学生的空间想象能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
设,将已知条件化为,利用可得答案.【详解】设,则,所以,所以,所以,所以,当且仅当时等号成立,所以的最小值为.故答案为:1【点睛】本题考查了复数的代数运算,考查了求复数的模的最值,关键是设复数的代数形式进行运算,属于中档题.14、【解析】分析:根据相互独立事件的概率乘法公式,目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,运算求得结果.详解:目标被击中的概率等于1减去甲、乙、丙三人都没有击中目标的概率,故目标被击中的概率是.故答案为.点睛:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系.15、【解析】
集合A中所有元素被选取了次,可得集合中所有3个元素的子集的元素和为即可得结果.【详解】集合中所有元素被选取了次,∴集合中所有3个元素的子集的元素和为,故答案为.【点睛】本题考查了集合的子集、正整数平方和计算公式,属于中档题.16、【解析】分析:详解:,设为曲线上任意一点,是圆:上与P对应的点,,得,,是圆上的点,的方程为,即.故答案为:.点睛:本题考查了几种特殊的矩阵变换,体现了方程的数学思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)结合不等式的特征,两边平方,用分析法证明不等式即可;(2)利用反证法,假设这三个数没有一个大于或等于,然后结合题意找到矛盾即可证得题中的结论.试题解析:(1)因为和都是正数,所以要证,只要证,展开得,只要证,只要证,因为成立,所以成立.(2)假设这三个数没有一个大于或等于,即,上面不等式相加得(*)而,这与(*)式矛盾,所以假设不成立,即原命题成立.点睛:一是分析法是“执果索因”,特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是寻找使结论成立的充分条件;二是应用反证法证题时必须先否定结论,把结论的反面作为条件,且必须根据这一条件进行推理,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法.所谓矛盾主要指:①与已知条件矛盾;②与假设矛盾;③与定义、公理、定理矛盾;④与公认的简单事实矛盾;⑤自相矛盾.18、A=【解析】
运用矩阵定义列出方程组求解矩阵A【详解】由特征值、特征向量定义可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单19、(1);(2)见解析;(3)见解析【解析】
分析:(1)求出,由的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)求出,分两种情况讨论的范围,在定义域内,分别令,可得函数的增区间,,可得函数的减区间;(3)原不等式等价于令,则,于是,,利用导数可证明,从而可得结果.详解:在区间上,.(1)当时,则切线方程为,即(2)若,则,是区间上的增函数,若,令得:.在区间上,,函数是增函数;在区间上,,函数是减函数;(3)设,原不等式令,则,于是.设函数,求导得:故函数是上的增函数,即不等式成立,故所证不等式成立.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.20、(1)(2)【解析】
(1)由题可知,椭圆的另一个焦点为,利用椭圆的定义,求得,再理由椭圆中,求得的值,即可得到椭圆的方程;(2)设直线的方程为,联立方程组,利用根与系数的关系,求得,在由,进而可求解斜率的取值范围,得到答案。【详解】(1)由题可知,椭圆的另一个焦点为,所以点到两焦点的距离之和为.所以.又因为,所以,则椭圆的方程为.(2)当直线的斜率不存在时,结合椭圆的对称性可知,,不符合题意.故设直线的方程为,,,联立,可得.所以而,由,可得.所以,又因为,所以.综上,.【点睛】本题主要考查椭圆的定义及标准方程、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错漏百出,本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等。21、单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1]【解析】
先求出f(x)的导数f′(x),令f′(x)=0,得出零点.讨论零点两侧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论