2023届湖北省十堰市第二中学数学高二下期末教学质量检测试题含解析_第1页
2023届湖北省十堰市第二中学数学高二下期末教学质量检测试题含解析_第2页
2023届湖北省十堰市第二中学数学高二下期末教学质量检测试题含解析_第3页
2023届湖北省十堰市第二中学数学高二下期末教学质量检测试题含解析_第4页
2023届湖北省十堰市第二中学数学高二下期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数在区间上为减函数,则的取值范围为()A. B. C. D.2.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.3.两个变量的相关关系有正相关,负相关,不相关,则下列散点图从左到右分别反映的变量间的相关关系是A. B. C. D.4.已知,,,,且满足,,,对于,,,四个数的判断,给出下列四个命题:①至少有一个数大于1;②至多有一个数大于1;③至少有一个数小于0;④至多有一个数小于0.其中真命题的是()A.①③ B.②④ C.①④ D.②③5.甲,乙,丙,丁四人参加完某项比赛,当问到四人谁得第一时,回答如下:甲:“我得第一名”;乙:“丁没得第一名”;丙:“乙没得第一名”;丁:“我得第一名”.已知他们四人中只有一个说真话,且只有一人得第一.根据以上信息可以判断得第一名的人是()A.甲B.乙C.丙D.丁6.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜,根据经验,每局比赛中甲获胜的概率为0.4,则本次比赛甲获胜的概率是()A.0.216 B.0.36 C.0.352 D.0.6487.设函数()有且仅有两个极值点(),则实数的取值范围是()A. B. C. D.8.圆与圆的位置关系是()A.相交 B.内切 C.外切 D.相离9.已知命题,则命题的否定为()A. B.C. D.10.已知等差数列的前项和为,,,则()A.10 B.12 C.16 D.2011.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是()2017201620152014……654321403340314029…………11975380648060………………201612816124……362820………A. B.C. D.12.设复数z满足=i,则|z|=()A.1 B. C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知奇函数且,为的导函数,当时,,且,则不等式的解集为_____.14.设为的展开式中含项的系数,为的展开式中二项式系数的和,则能使成立的的最大值是________.15.已知甲箱子里装有3个白球、2个黑球,乙箱子里装有2个白球、2个黑球,从这两个箱子里分别随机摸出1个球,则恰有一个白球的概率为__________.16.在平面直角坐标系中,已知,,两曲线与在区间上交点为.若两曲线在点处的切线与轴分别相交于两点,则线段的为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(其中,且为常数).(1)当时,求函数的单调区间;(2)若对于任意的,都有成立,求的取值范围;(3)若方程在上有且只有一个实根,求的取值范围.18.(12分)在中,角所对的边分别为且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.19.(12分)设函数过点.(Ⅰ)求函数的极大值和极小值.(Ⅱ)求函数在上的最大值和最小值.20.(12分)已知函数(其中a,b为常数,且,)的图象经过点,.(1)求的解析式;(2)若不等式在时恒成立,求实数的取值范围.21.(12分)设函数的最小值为.(1)求实数m的值;(2)已知,且满足,求证:.22.(10分)已知函数.(1)当,求函数的单调区间;(2)若函数在上是减函数,求的最小值;(3)证明:当时,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

对参数进行分类讨论,当为二次函数时,只需考虑对称轴和区间的位置关系即可.【详解】当时,,满足题意;当时,要满足题意,只需,且,解得.综上所述:.故选:B.【点睛】本题考查由函数的单调区间,求参数范围的问题,属基础题.2、C【解析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.3、D【解析】

分别分析三个图中的点的分布情况,即可得出图是正相关关系,图不相关的,图是负相关关系.【详解】对于,图中的点成带状分布,且从左到右上升,是正相关关系;对于,图中的点没有明显的带状分布,是不相关的;对于,图中的点成带状分布,且从左到右是下降的,是负相关关系.故选:D.【点睛】本题考查了利散点图判断相关性问题,是基础题.4、A【解析】

根据对,,,取特殊值,可得②,④不对,以及使用反证法,可得结果.【详解】当,时,满足条件,故②,④为假命题;假设,由,,得,则,由,所以矛盾,故①为真命题,同理③为真命题.故选:A【点睛】本题主要考查反证法,正所谓“正难则反”,熟练掌握反证法的证明方法,属基础题.5、B【解析】分析:分别假设甲、乙、丙、丁得第一名,逐一分析判断即可.详解:若甲得第一名,则甲、乙、丙说了真话,丁说了假话,不符合题意;若乙得第一名,则乙说了真话,甲、丙、丁说了假话,符合题意;若丙得第一名,则乙、丙说了真话,甲、丁说了假话,不符合题意;若丁得第一名,则丙、丁说了真话,甲、乙说了假话,不符合题意点睛:本题考查推理论证,考查简单的合情推理等基础知识,考查逻辑推理能力,属于基础题.6、C【解析】

先列举出甲获胜的情况,再利用独立事件的概率乘法公式可计算出所求事件的概率。【详解】记事件A:甲获胜,则事件A包含:①比赛两局,这两局甲赢;②比赛三局,前两局甲、乙各赢一局,第三局甲赢。由独立事件的概率乘法公式得PA故选:C.【点睛】本题考查独立事件的概率乘法公式的应用,解题前先要弄清事件所包含的基本情况,并逐一列举出来,并结合概率的乘法公式进行计算,考查计算能力,属于中等题。7、B【解析】

函数()有且仅有两个极值点,即为在上有两个不同的解,进而转化为两个图像的交点问题进行求解.【详解】解:因为函数()有且仅有两个极值点,所以在上有两个不同的解,即2ax+ex=0在上有两解,即直线y=-2ax与函数y=ex的图象有两个交点,设函数与函数的图象相切,切点为(x0,y0),作函数y=ex的图象,因为则,所以,解得x0=1,即切点为(1,e),此时k=e,由图象知直线与函数y=ex的图象有两个交点时,有即-2a>e,解得a<,故选B.【点睛】本题考查了函数极值点的问题,解决此类问题的方法是将函数问题转化为方程根的问题,再通过数形结合的思想方法解决问题.8、C【解析】

据题意可知两个圆的圆心分别为,;半径分别为1和4;圆心距离为5,再由半径长度与圆心距可判断两圆位置关系.【详解】设两个圆的半径分别为和,因为圆的方程为与圆所以圆心坐标为,圆心距离为5,由,可知两圆外切,故选C.【点睛】本题考查两圆的位置关系,属于基础题.9、A【解析】

根据全称命题的否定为特称命题,即可直接得出结果.【详解】因为命题,所以命题的否定为:故选A【点睛】本题主要考查含有一个量词的命题的否定,只需改写量词与结论即可,属于常考题型.10、D【解析】

利用等差数列的前项和公式以及通项公式即可求出.【详解】,,,,故选:D【点睛】本题考查了等差数列的前项和公式以及通项公式,考查了学生的计算,属于较易题.11、B【解析】

数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论.【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,故从右到左第1行的第一个数为:2×2﹣1,从右到左第2行的第一个数为:3×20,从右到左第3行的第一个数为:4×21,…从右到左第n行的第一个数为:(n+1)×2n﹣2,第2017行只有M,则M=(1+2017)•22015=2018×22015故答案为:B.【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.12、A【解析】试题分析:由题意得,,所以,故选A.考点:复数的运算与复数的模.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

构造函数,,根据条件可知,当时,,,根据单调性可得时,则有;当时,同理进行讨论可得.【详解】由题构造函数,求导得,当时,,所以在上递增,因为,所以,则有时,那么此时;时,那么此时;当时,为奇函数,则是偶函数,根据对称性,时,又因,故当时,;综上的解集为.【点睛】本题考查求不等式解集,运用了构造新函数的方法,根据讨论新函数的单调性求原函数的解集,有一定难度.14、4【解析】

由题意可得,An==,,若使得An≥Bn,即n(n+1)≥2n,可求.【详解】∵(1+x)n+1的展开式的通项为Tr+1,由题意可得,An==,又∵为的展开式中二项式系数的和,∴,∵An≥Bn,∴,即n(n+1)≥2n当n=1时,1×2≥2,满足题意;当n=2时,2×3≥22,满足题意;当n=3时,3×4≥23,满足题意;当n=4时,4×5≥24,满足题意;当n=5时,5×6<25,不满足题意,且由于指数函数比二次函数增加的快,故当n≥5时,n(n+1)<2n,∴=4.故答案为4【点睛】本题主要考查了二项展开式的通项公式的应用,二项展开式的性质应用及不等式、指数函数与二次函数的增加速度的快慢的应用,属于中档题.15、【解析】

通过分析恰有一个白球分为两类:“甲中一白球乙中一黑球”,“甲中一黑球乙中一白球”,于是分别计算概率相加即得答案.【详解】恰有一个白球分为两类:甲中一白球乙中一黑球,甲中一黑球乙中一白球.甲中一白球乙中一黑球概率为:,甲中一黑球乙中一白球概率为:,故所求概率为.【点睛】本题主要考查乘法原理和加法原理的相关计算,难度不大,意在考查学生的分析能力,计算能力.16、【解析】分析:求出点坐标,然后分别求出和在A处切线方程,即可求出两点坐标详解:由可得,所以又因为所以所以在A点处切线方程为:令解得,所以又因为所以所以在A点处切线方程为:令解得,所以所以线段BC的长度为点睛:熟练记忆导函数公式是解导数题的前提条件,导数的几何意义是在曲线上某一点处的导数就等于该点处切线斜率,是解决曲线切线的关键,要灵活掌握.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)在(0,1),上单调递增,在(1,2)上单调递减(Ⅱ)(Ⅲ)【解析】【试题分析】(1)将代入再求导,借助导函数值的符号确定函数的单调区间;(2)借助问题(1)的结论,对参数进行分类讨论,最终确定参数的取值范围;(3)依据题设条件将问题进行等价转化为的零点的个数问题,再运用导数知识及分类整合思想进行分析探求:解:⑴函数的定义域为由知当时,所以函数在(0,1)上单调递增,在(1,2)上单调递减,在上单调递增(Ⅱ)由当时,对于恒成立,在上单调递增,此时命题成立;当时,在上单调递减,在上单调递增,当时,有.这与题设矛盾,不合.故的取值范围是(Ⅲ)依题意,设,原题即为若在上有且只有一个零点,求的取值范围.显然函数与的单调性是一致的.当时,因为函数在上递增,由题意可知解得;‚当时,因为,当时,总有,此时方程没有实根。综上所述,当时,方程在上有且只有一个实根。点睛:解答本题的第一问时,先将代入再求导,借助导函数值的符号确定函数的单调区间;求解第二问时,借助问题(1)的结论,对参数进行分类讨论,最终确定参数的取值范围;解答第三问时,依据题设条件将问题进行等价转化为的零点的个数问题,再运用导数知识及分类整合思想进行分析探求,从而求出参数的取值范围。18、(1);(2).【解析】试题分析:(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件,(3)注意锐角三角形的各角都是锐角.(4)把边的关系转化成角,对于求边的取值范围很有帮助试题解析:(1)由,得,所以,则,由,。(2)由(1)得,即,又为锐角三角形,故从而.由,所以所以,所以因为所以即考点:余弦定理的变形及化归思想19、(Ⅰ)的极大值,极小值(Ⅱ)【解析】试题分析:(Ⅰ)由题意求得,根据导函数的符号判断出函数的单调性,结合单调性可得函数的极值情况.(Ⅱ)结合(Ⅰ)中的结论可知,函数在区间上单调递减,在区间上单调递增,故,再根据和的大小求出即可.试题解析:(Ⅰ)∵点在函数的图象上,∴,解得,∴,∴,当或时,,单调递增;当时,,单调递减.∴当时,有极大值,且极大值为,当时,有极小值,且极小值为.(Ⅱ)由(I)可得:函数在区间上单调递减,在区间上单调递增.∴,又,,∴.20、(1)(2)【解析】试题分析:(1)把点代入函数的解析式求出的值,即可求得的解析式.(2)由(1)知在上恒成立,设,利用g(x)在上是减函数,能求出实数m的最大值.试题解析:(1)由题意得(2)设在上是减函数在上的最小值因为在上恒成立即得所以实数的取值范围.考点:函数恒成立问题;函数解析式的求解及常用方法.21、(1).(2)证明见解析.【解析】

分析:(1)由绝对值三角不等式可得最小值;(2)由(1)已知可变为,,展

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论