2022-2023学年天津市静海一中数学高二下期末监测试题含解析_第1页
2022-2023学年天津市静海一中数学高二下期末监测试题含解析_第2页
2022-2023学年天津市静海一中数学高二下期末监测试题含解析_第3页
2022-2023学年天津市静海一中数学高二下期末监测试题含解析_第4页
2022-2023学年天津市静海一中数学高二下期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植量是8万斤,每种植一斤藕,成本增加0.5元.如果销售额函数是(是莲藕种植量,单位:万斤;销售额的单位:万元,是常数),若种植2万斤,利润是2.5万元,则要使利润最大,每年需种植莲藕()A.8万斤 B.6万斤 C.3万斤 D.5万斤2.椭圆为参数)的离心率是()A. B. C. D.3.某学校高三模拟考试中数学成绩服从正态分布,考生共有1000人,估计数学成绩在75分到86分之间的人数约为()人.参考数据:,)A.261 B.341 C.477 D.6834.将甲,乙等5位同学分别保送到北京大学,清华大学,浙江大学等三所大学就读,则每所大学至少保送一人的不同保送的方法数为()A.150种 B.180种 C.240种 D.540种5.设函数,则的图象大致为()A. B.C. D.6.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为()A. B. C. D.7.若关于的不等式恒成立,则实数的取值范围()A. B. C. D.8.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.9.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为()A. B. C. D.10.已知为虚数单位,复数满足,在复平面内所对的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知数据,2的平均值为2,方差为1,则数据相对于原数据()A.一样稳定 B.变得比较稳定C.变得比较不稳定 D.稳定性不可以判断12.通过随机询问50名性别不同的大学生是否爱好某项运动,得到如下的列联表,由得参照附表,得到的正确结论是().爱好不爱好合计男生20525女生101525合计302050附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.有99.5%以上的把握认为“爱好该项运动与性别有关”B.有99.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”二、填空题:本题共4小题,每小题5分,共20分。13.将极坐标化成直角坐标为_________.14.若,则=______.15.已知圆C1:,圆C2:,M,N分别是圆C1,C2上的动点,P为轴上的动点,则的最小值_____.16.在棱长为1的正方体中,点是对角线上的动点(点与不重合),则下列结论正确的是____.①存在点,使得平面平面;②存在点,使得平面;③的面积不可能等于;④若分别是在平面与平面的正投影的面积,则存在点,使得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一次数学测验后,班级学委对选答题的选题情况进行统计,如下表:几何证明选讲极坐标与参数方程不等式选讲合计男同学124622女同学081220合计12121842(1)在统计结果中,如果把几何证明选讲和极坐标与参数方程称为“几何类”,把不等式选讲称为“代数类”,我们可以得到如下2×2列联表.几何类代数类合计男同学16622女同学81220合计241842能否认为选做“几何类”或“代数类”与性别有关,若有关,你有多大的把握?(2)在原始统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选答题的同学中随机选出7名同学进行座谈.已知这名学委和2名数学课代表都在选做“不等式选讲”的同学中.①求在这名学委被选中的条件下,2名数学课代表也被选中的概率;②记抽取到数学课代表的人数为,求的分布列及数学期望.下面临界值表仅供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.19.(12分)(选修4-4.坐标系与参数方程)在直角坐标系中,曲线的参数方程是(为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的普通方程和直线的直角坐标方程;(2)设点,直线与曲线相交于两点,且,求实数的值.20.(12分)设函数.(1)解不等式;(2)若关于的不等式解集是空集,求实数的取值范围.21.(12分)某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?身体状况好身体状况一般总计爱好运动不爱好运动总计(2)现将位工人的健康指数分为如下组:,,,,,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。附:。22.(10分)已知函数.(Ⅰ)讨论函数的单调性:(Ⅱ)若函数的两个零点为,且,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

销售的利润为,利用可得,再利用导数确定函数的单调性后可得利润的最大值.【详解】设销售的利润为,由题意,得,即,当时,,解得,故,当时,,当时,,所以函数在上单调递增,在上单调递减,所以时,利润最大,故选B.【点睛】一般地,若在区间上可导,且,则在上为单调增(减)函数;反之,若在区间上可导且为单调增(减)函数,则.2、A【解析】

先求出椭圆的普通方程,再求其离心率得解.【详解】椭圆的标准方程为,所以c=.所以e=.故答案为A【点睛】(1)本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)在椭圆中,3、B【解析】分析:正态总体的取值关于对称,位于之间的概率是0.6826,根据概率求出位于这个范围中的个数,根据对称性除以2得到要求的结果.详解:正态总体的取值关于对称,位于之间的概率是,则估计数学成绩在75分到86分之间的人数约为人.故选B.点睛:题考查正态曲线的特点及曲线所表示的意义,是一个基础题,解题的关键是考试的成绩关对称,利用对称写出要用的一段分数的频数,题目得解.4、A【解析】先将个人分成三组,或,分组方法有中,再将三组全排列有种,故总的方法数有种.选A.5、A【解析】

根据可知函数为奇函数,根据奇函数性质,排除;根据时,的符号可排除,从而得到结果.【详解】,为上的奇函数,图象关于原点对称,且,可排除,;又,当时,,当时,,可排除,知正确.故选:.【点睛】本题考查函数图象的辨析问题,解决此类问题通常采用排除法来进行求解,排除依据通常为:奇偶性、特殊值符号和单调性.6、C【解析】

在下雨条件下吹东风的概率=既吹东风又下雨的概率下雨的概率【详解】在下雨条件下吹东风的概率为,选C【点睛】本题考查条件概率的计算,属于简单题.7、B【解析】

恒成立等价于恒成立,令,则问题转化为,对函数求导,利用导函数求其最大值,进而得到答案。【详解】恒成立等价于恒成立,令,则问题转化为,,令,则,所以当时,所以在单调递减且,所以在上单调递增,在上的单调递减,当时,函数取得最大值,,所以故选B【点睛】本题考查利用导函数解答恒成立问题,解题的关键是构造函数,属于一般题。8、B【解析】

求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【点睛】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.9、C【解析】分析:由题意,该几何体是一个正四棱柱切了四个角(小三棱锥),从而利用体积公式计算即可.详解:由题意,该几何体是一个正四棱柱切了四个角(小三棱锥),则.故选:C.点睛:(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.10、B【解析】

化简得到,得到答案.【详解】,故,故对应点在第二象限.故选:.【点睛】本题考查了复数的化简,对应象限,意在考查学生的计算能力.11、C【解析】

根据均值定义列式计算可得的和,从而得它们的均值,再由方差公式可得,从而得方差.然后判断.【详解】由题可得:平均值为2,由,,所以变得不稳定.故选:C.【点睛】本题考查均值与方差的计算公式,考查方差的含义.属于基础题.12、A【解析】

对照表格,看在中哪两个数之间,用较小的那个数据说明结论.【详解】由≈8.333>7.879,参照附表可得:有99.5%以上的把握认为“爱好该项运动与性别有关”,故选:A.【点睛】本题考查独立性检验,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

试题分析:由题意得,,所以直角坐标为故答案为:考点:极坐标与直角坐标的互化.14、365【解析】分析:令代入可知的值,令代入可求得的值,然后将两式相加可求得的值.详解:中,令代入可知令代入可得,除以相加除以2可得.即答案为365.点睛:本题主要考查的是二项展开式各项系数和,充分利用赋值法是解题的关键.15、【解析】

求出圆关于轴对称圆的圆心坐标,以及半径,然后求解圆与圆的圆心距减去两个圆的半径和,即可得到的最小值.【详解】如图所示,圆关于轴对称圆的圆心坐标,以及半径,圆的圆心坐标为,半径为,所以的最小值为圆与圆的圆心距减去两个圆的半径和,即.【点睛】本题主要考查了圆的对称圆的方程的求法,以及两圆的位置关系的应用,其中解答中把的最小值转化为圆与圆的圆心距减去两个圆的半径和是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.16、①②④【解析】

逐项分析.【详解】①如图当是中点时,可知也是中点且,,,所以平面,所以,同理可知,且,所以平面,又平面,所以平面平面,故正确;②如图取靠近的一个三等分点记为,记,,因为,所以,所以为靠近的一个三等分点,则为中点,又为中点,所以,且,,,所以平面平面,且平面,所以平面,故正确;③如图作,在中根据等面积得:,根据对称性可知:,又,所以是等腰三角形,则,故错误;④如图设,在平面内的正投影为,在平面内的正投影为,所以,,当时,解得:,故正确.故填:①②④.【点睛】本题考查立体几何的综合问题,难度较难.对于判断是否存在满足垂直或者平行的位置关系,可通过对特殊位置进行分析得到结论,一般优先考虑中点、三等分点;同时计算线段上动点是否满足一些情况时,可以设动点和线段某一端点组成的线段与整个线段长度的比值为,然后统一未知数去分析问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2)①.;②.答案见解析.【解析】分析:(1)由题意知K2的观测值k≈4.582>3.841,则有95%的把握认为选做“几何类”或“代数类”与性别有关.(2)①由题意结合条件概率计算公式可知在学委被选中的条件下,2名数学课代表也被选中的概率为;②由题意知X的可能取值为0,1,2.由超几何分布计算相应的概率值可得其分布列,然后计算其数学期望为E(X)=.详解:(1)由题意知K2的观测值k=≈4.582>3.841,所以有95%的把握认为选做“几何类”或“代数类”与性别有关.(2)①由题可知在选做“不等式选讲”的18名学生中,要选取3名同学,令事件A为“这名学委被选中”,事件B为“两名数学课代表被选中”,则,,②由题意知X的可能取值为0,1,2.依题意P(X=0)=,P(X=1)==,P(X=2)=,则其分布列为:所以E(X)=0×+1×+2×=.点睛:本题主要考查离散型随机变量的分布列和数学期望,独立性检验的数学思想等知识,意在考查学生的转化能力和计算求解能力.18、(1);(2)【解析】分析:(1)利用零点分类讨论法解不等式.(2)先利用分段函数求得,再解不等式得到实数的取值范围.详解:(1)当时,由得,故有或或∴或或,∴或,∴的解集为或.(2)当时∴由得∴∴的取值范围为.点睛:(1)本题主要考查绝对值不等式的解法,考查分段函数的最值的求法,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论的思想方法.(2)解题的关键是求的最小值,这里要利用分段函数的图像求解.19、(1),(2)或或.【解析】试题分析:(1)写普通方程,则只需消去参数和根据极坐标变换公式即可轻松求得故曲线的普通方程为.直线的直角坐标方程为.(2)由题可知,所以联立和得,代入韦达定理即得答案解析:(1),故曲线的普通方程为.直线的直角坐标方程为.(2)直线的参数方程可以写为(为参数).设两点对应的参数分别为,将直线的参数方程代入曲线的普通方程可以得到,所以或,解得或或.20、(1);(2)或.【解析】分析:(1)利用零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论