版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在中,,是的中点,,,若,,①四边形是平行四边形;②是等腰三角形;③四边形的周长是;④四边形的面积是1.则以上结论正确的是A.①②③ B.①②④ C.①③④ D.②④2.如图所示,矩形ABCD的面积为10cm2,它的两条对角线交于点O1,以AB、AO1为邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB、AO2为邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABC5O5的面积为()A.1cm2 B.2cm2 C.cm2 D.cm23.实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.4.下列下列算式中,正确的是()A. B.C. D.5.计算的结果为()A.±3 B.-3 C.3 D.96.菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.207.若一次函数的函数值y随x的值增大而增大,且此函数的图象不经过第二象限,则k的取值范围是()A. B. C. D.或8.将点向左平移2个单位长度得到点,则点的坐标是()A. B. C. D.9.以下运算错误的是()A. B.C. D.10.用反证法证明命题“在中,若,则”时,可以先假设()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.12.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.13.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.14.如果乘坐出租车所付款金额(元)与乘坐距离(千米)之间的函数图像由线段、线段和射线组成(如图所示),那么乘坐该出租车8(千米)需要支付的金额为__________元.15.在△ABC中,∠C=90°,AB=10,其余两边长是两个相邻的偶数,则这个三角形的周长为_____.16.式子有意义,则实数的取值范围是______________.17.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.18.一个装有进水管出水管的容器,从某时刻起只打开进水管进水,经过一段时间,在打开出水管放水,至15分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(升)与时间x(分钟)之间的关系如图所示,关停进水管后,经过_____________分钟,容器中的水恰好放完.三、解答题(共66分)19.(10分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1.射线BD为∠ABC的平分线,交AC于点D.动点P以每秒2个单位长度的速度从点B向终点C运动.作PE⊥BC交射线BD于点E.以PE为边向右作正方形PEFG.正方形PEFG与△BDC重叠部分图形的面积为S.(1)求tan∠ABD的值.(2)当点F落在AC边上时,求t的值.(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,求S与t之间的函数关系式.20.(6分)在平面直角坐标系中,设两数(,是常数,).若函数的图象过,且.(1)求的值:(2)将函数的图象向上平移个单位,平移后的函数图象与函数的图象交于直线上的同一点,求的值;(3)已知点(为常数)在函数的图象上,关于轴的对称点为,函数的图象经过点,当时,求的取值范围.21.(6分)如图,正方形的边长为6,菱形的三个顶点,,分别在正方形的边,,上,且,连接.(1)当时,求证:菱形为正方形;(2)设,试用含的代数式表示的面积.22.(8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:(1)慢车的速度为km/h,快车的速度为km/h;(2)解释图中点C的实际意义并求出点C的坐标;(3)求当x为多少时,两车之间的距离为500km.23.(8分)如图,已知平行四边形ABCD,(1)=;(用的式子表示)(2)=;(用的式子表示)(3)若AC⊥BD,||=4,||=6,则|+|=.24.(8分)如图,是平行四边形的对角线,分别为边和边延长线上的点,连接交于点,且.(1)求证:;(2)若是等腰直角三角形,,是的中点,,连接,求的长.25.(10分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.26.(10分)物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?
参考答案一、选择题(每小题3分,共30分)1、A【解析】
证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【详解】①,,,,,四边形是平行四边形,故①正确;②是的中点,,,是等腰三角形,故②正确;③,,,,四边形是平行四边形,,,,,,,四边形的周长是故③正确;④四边形的面积:,故④错误,故选.【点睛】此题主要考查了平行四边形的判定和性质,以及三角函数的应用,关键是利用三角函数值计算出CB长.2、D【解析】
根据矩形的性质对角线互相平分可知O1是AC与DB的中点,根据等底同高得到S△ABO1=S矩形,又ABC1O1为平行四边形,根据平行四边形的性质对角线互相平分,得到O1O2=BO2,所以S△ABO2=S矩形,…,以此类推得到S△ABO5=S矩形,而S△ABO5等于平行四边形ABC5O5的面积的一半,根据矩形的面积即可求出平行四边形ABC5O5的面积.【详解】解:∵设平行四边形ABC1O1的面积为S1,∴S△ABO1=S1,又S△ABO1=S矩形,∴S1=S矩形=5=;设ABC2O2为平行四边形为S2,∴S△ABO2=S2,又S△ABO2=S矩形,∴S2=S矩形==;,…,同理:设ABC5O5为平行四边形为S5,S5==.故选:D.【点睛】此题综合考查了矩形及平行四边形的性质,要求学生审清题意,找出面积之间的关系,归纳总结出一般性的结论.考查了学生观察、猜想、验证及归纳总结的能力.3、B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a-b<0,∴=|b|+|a-b|-|a|,=b-(a-b)+a,=b-a+b+a,=2b.故选B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.4、B【解析】
根据二次根式的加减运算法则和二次根式的性质逐项计算化简进行判断.【详解】解:A项,与不是同类二次根式,不能合并,故本选项错误;B项,,正确;C项,,故本选项错误;D项,,故本选项错误;故选B.【点睛】本题考查了二次根式的性质和加减运算,正确的进行二次根式的化简和根据加减运算法则进行计算是解题的关键.5、C【解析】
根据=|a|进行计算即可.【详解】=|-3|=3,故选:C.【点睛】此题考查了二次根式的性质,熟练掌握这一性质是解题的关键.6、A【解析】
由勾股定理可得AB的长,继而得到菱形ABCD的周长.【详解】因为菱形ABCD中,AC=10,BD=24,所以OB=12,OA=5.在直角三角形ABO中,AB=,所以菱形ABCD的周长=4AB=52,故答案为A.【点睛】本题考查勾股定理和菱形的性质,解题的关键是掌握勾股定理和菱形的性质.7、C【解析】
先根据函数y随x的增大而增大可确定1−2k>1,再由函数的图象不经过第二象限可得图象与y轴的交点在y轴的负半轴上或原点,即−k≤1,进而可求出k的取值范围.【详解】解:∵一次函数y=(1−2k)x−k的函数值y随x的增大而增大,且此函数的图象不经过第二象限,∴1−2k>1,且−k≤1,解得,故选:C.【点睛】本题主要考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1;一次函数y=kx+b图象与y轴的负半轴相交⇔b<1;一次函数y=kx+b图象过原点⇔b=1.8、C【解析】
让点A的横坐标减2,纵坐标不变,可得A′的坐标.【详解】解:将点A(4,2)向左平移2个单位长度得到点A′,则点A′的坐标是(4−2,2),即(2,2),故选:C.【点睛】本题考查坐标的平移变化,用到的知识点为:左右平移只改变点的横坐标,左减右加.9、B【解析】A.,正确;B.=5,则原计算错误;C.,正确;D.,正确,故选B.10、B【解析】
根据反证法的第一步是假设结论不成立进而解答即可.【详解】解:用反证法证明命题“△ABC中,若∠A>∠B+∠C,则∠A>90°”时,应先假设∠A≤90°.故选:B.【点睛】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.二、填空题(每小题3分,共24分)11、【解析】
根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.【详解】∵四边形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案为:.【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.12、1【解析】
过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=1,故答案为:1.【点睛】此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线13、(8,33)【解析】
根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.【详解】∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=A∴DO=33∴D(0,33)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,33)故答案为(8,33)【点睛】本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.14、1【解析】
根据图象可知,8(千米)处于图中BC段,用待定系数法求出线段BC的解析式,然后令求出相应的y的值即可.【详解】根据图象可知位于线段BC上,设线段BC的解析式为将代入解析式中得解得∴线段BC解析式为,当时,,∴乘坐该出租车8(千米)需要支付的金额为1元.故答案为:1.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法是解题的关键.15、24【解析】
设其余两边长分别为、,根据勾股定理列出方程,解方程求出,计算即可.【详解】设其余两边长分别为、,由勾股定理得,,整理得,,解得,(舍去),,则其余两边长分别为、,则这个三角形的周长.故答案为:.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是、,斜边长为,那么.16、且【解析】分析:直接利用二次根式的定义:被开方数大于等于零,分式有意义的条件:分母不为零,分析得出答案.详解:式子有意义,则+1≥0,且-2≠0,解得:≥-1且≠2.故答案:且.点睛:本题主要考查了二次根式有意义的条件及分式有意义的条件.17、2.5×10-1【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-1,
故答案为2.5×10-1.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、13.5【解析】
从图形中可得前6分钟只进水,此时可计算出进水管的速度,从第6分到第15分既进水又出水,且进水速度大于出水速度,根据此时进水的速度=进水管的速度-出水管的速度即可计算出出水管的出水速度,即可解答【详解】从图形可以看出进水管的速度为:60÷6=10(升/分),出水管的速度为:10-(90-60)÷(15-6)=(升/分),关闭进水管后,放水经过的时间为:90÷=13.5(分).【点睛】此题考查一次函数的应用,函数图象,解题关键在于看懂图象中的数据三、解答题(共66分)19、(1)tan∠ABD=;(2);(3)①当时,;②当时,;③当时,.【解析】
(1)过点D作DH⊥BC于点H,可得△ABD≌△HBD,所以CH=BC-AB=4.再由三角形相似即可求出DH=AD=3.根据三角函数定义即可解题.(2)由(1)得BP=2PE,所以BP=2t,PE=PG=EF=FG=t,当点F落在AC边上时,FG=CG,即可得到方程求出t.(3)当正方形PEFG与△BDC重叠部分图形不是三角形时,分三种情况分别求出S与t之间的函数关系式,①当时,F点在三角形内部或边上,②当时,如图:E点在三角形内部,F点在外部,此时重叠部分图形的面积S=S正方形-S△FMN,③当时,重叠部分面积为梯形MPGN面积,【详解】解:(1)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=1根据勾股定理得BC=10过点D作DH⊥BC于点H∵△ABD≌△HBD,∴BH=AH=6,DH=AD,∴CH=4,∵△ABC∽△HDC,∴,∴,∴DH=AD=3,∴tan∠ABD==,(2)由(1)可知BP=2PE,依题意得:BP=2t,PE=PG=EF=FG=t,CG=10-3t,当点F落在AC边上时,FG=CG,即,,(3)①当时,F点在三角形内部或边上,正方形PEFG在△BDC内部,此时重叠部分图形的面积为正方形面积:,②当时,如图:E点在三角形内部,F点在外部,∵GC=10-3t,NG=CG=(10-3t),FN=t-(10-3t),FM=,此时重叠部分图形的面积S=S正方形-S△FMN,③当时,重叠部分面积为梯形MPGN面积,如图:∵GC=10-3t,NG=CG=(10-3t),PC=10-2t,PM=,∴,综上所述:当时,;当时,;当时,.【点睛】本题考查三角形综合题,涉及了矩形的性质、勾股定理、相似三角形的性质和判定、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考压轴题.20、(1);(2);(3)或【解析】
(1)根据题意列方程组即可得到结论;(2)根据平移的性质得到平移后的函数的解析式为y=-x+2+h,得到交点的坐标为(1,4),把(1,4)代入y=-x+2+h即可得到结论;(3)由点M(a,b)(a,b为常数)在函数y1=-x+m的图象上,得到M(a,2-a),求得点M(a,b)关于y轴的对称点N(-a,2-a),于是得到y3=x+2,解不等式即可得到结论.【详解】解:(1)的图象过,∴又,;(2)将的图象向上平移后为,与函数的图象交直线于点(1,4),将(1,4)代入,得:,解得:.(3)∵点M(a,b)(a,b为常数)在函数y1=-x+m的图象上,∴M(a,2-a),∴点M(a,b)关于y轴的对称点N(-a,2-a),∵函数y3=kx+m(k≠1)的图象经过点N,,由,代入得:,当x>1时,解得:x>2,当x<1时,解得:x<1,综上所述,x的取值范围为:x>2或x<1.【点睛】本题考查了反比例函数与一次函数的交点问题,正确的理解题意,熟练掌握反比例函数与一次函数的关系是解题的关键.注意掌握数形结合的思想进行解题.21、(1)见解析;(2).【解析】
(1)根据已知条件可证明,再通过等量代换即可得出,继而证明结论;(2)过点作,交的延长线于点,连接,再证明,得出,进而可求得答案.【详解】解:(1)∵四边形是正方形,∴,∵四边形是菱形,∴.∵,∴∴,∴∴,∴菱形为正方形.(2)如图,过点作,交的延长线于点,连接,∵,∴,∵,∴∴在和中,∴∴∵,∴∴【点睛】本题考查了正方形的性质、菱形的判定及性质、勾股定理,会利用数形结合的思想解题,能够正确的作出辅助项是解此题的关键.22、80120【解析】
(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.【详解】(1)设慢车的速度为akm/h,快车的速度为bkm/h,根据题意,得,解得,故答案为80,120;(2)图中点C的实际意义是:快车到达乙地;∵快车走完全程所需时间为720÷120=6(h),∴点C的横坐标为6,纵坐标为(80+120)×(6﹣3.6)=480,即点C(6,480);(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.即相遇前:(80+120)x=720﹣500,解得x=1.1,相遇后:∵点C(6,480),∴慢车行驶20km两车之间的距离为500km,∵慢车行驶20km需要的时间是=0.25(h),∴x=6+0.25=6.25(h),故x=1.1h或6.25h,两车之间的距离为500km.【点睛】考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.23、【解析】
(1)(2)根据平面向量的加法法则计算即可解决问题;(3)利用勾股定理计算即可;【详解】解:(1)=+=﹣;(2)=+=;(3)∵AC⊥BD,||=4,||=6,∴|+|=2.故答案为﹣,,2【点睛】此题考查平面向量的加法法则,勾股定理,解题关键在于掌握运算法则24、(1)见解析;(2)【解析】
(1)只要证明四边形ACHF是平行四边形,四边形ACGE是平行四边形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年城市管道天然气项目合作计划书
- 《历史和人民为什么选择了中国共产党》探讨课导学案 浙江省部编版历史与社会八年级上册
- TA-606-生命科学试剂-MCE
- Succinic-acid-standard-生命科学试剂-MCE
- Stearic-acid-PEG-CH2CO2H-MW-5000-生命科学试剂-MCE
- 六年级语文楚才杯大人的陋习获奖作文3
- 2024-2025学年高考物理一轮复习专题13静电场2知识点练习含解析
- 2024-2025学年高中生物专题4生物技术的安全性和伦理问题1转基因产品的安全性课时达标训练含解析新人教版选修3
- 2024-2025学年高中历史第五单元杰出的科学家第21课“地质之光”李四光教学教案岳麓版选修4
- 2024春七年级英语下册Module4Lifeinthefuture模块话题写作同步练习新版外研版
- 医院科室质量与安全管理小组工作记录本目录
- 义务教育(道德与法治)新课程标准(2022年修订版)
- 断路器失灵保护及远跳详解
- 300字方格纸模板
- 草诀百韵歌原文及解释
- 钢网架防火涂料施工方案
- 肺癌的护理常规(PPT课件)
- 农村商业银行信贷业务发展规划-2019年文档
- 一汽大众供应商物流管理评价标准
- 化工厂工程设备安装施工方案.doc
- 同位角内错角同旁内角专项练习题有答案
评论
0/150
提交评论