2022-2023学年山东专卷博雅闻道数学高二下期末学业水平测试模拟试题含解析_第1页
2022-2023学年山东专卷博雅闻道数学高二下期末学业水平测试模拟试题含解析_第2页
2022-2023学年山东专卷博雅闻道数学高二下期末学业水平测试模拟试题含解析_第3页
2022-2023学年山东专卷博雅闻道数学高二下期末学业水平测试模拟试题含解析_第4页
2022-2023学年山东专卷博雅闻道数学高二下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,,,则A. B. C. D.2.在平面直角坐标系中,,,,,若,,则的最小值是()A.B.C.D.3.已知随机变量,,则()A.0.16 B.0.32 C.0.66 D.0.684.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与的关系为()A.外离 B.相交 C.相切 D.内含5.已知复数满足(为虚数单位),则共轭复数等于()A. B. C. D.6.某几何体的三视图如图所示,其中正视图和侧视图的上半部分均为半圆,下半部分为等腰直角三角形,则该几何体的表面积为()A. B. C. D.7.执行如图所示的程序框图,若输出的S的值为3,则判断框中填入的条件可以是()A. B. C. D.8.设是定义在上的偶函数,且当时,,若对任意的,不等式恒成立,则实数的最大值是()A. B. C. D.9.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌又会跳舞,现从中选出2名会唱歌的,1名会跳舞的,去参加文艺演出,求所有不同的选法种数为()A.18 B.15 C.16 D.2510.若“”是“不等式成立”的一个充分不必要条件,则实数的取值范围是()A. B. C. D.11.设,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件12.已知集合,,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.定义在R上的函数满足,且对任意的不相等的实数,有成立,若关于x的不等式在上恒成立,则实数m的取值范围________.14.已知函数,若函数存在唯一零点,且,则实数a的取值范围是________.15.已知f(x)=,若f(0)是f(x)的最小值,则t的取值范围为________.16.已知函数f(x)=axlnx+b(a,b∈R),若f(x)的图象在x=1处的切线方程为2x-y=0,则a+b=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4-5:不等式选讲已知函数.(1)求不等式的解集;(2)若对恒成立,求的取值范围.18.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),直线的普通方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求曲线和直线的极坐标方程;(2)若直线与曲线交于,两点,求.19.(12分)已知函数.(1)求函数的最小值;(2)若恒成立,求实数的值;(3)设有两个极值点,求实数的取值范围,并证明.20.(12分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为:(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于,两点.(1)求直线的普通方程和曲线的直角坐标方程;(2)若点的极坐标为,求的面积.21.(12分)2016年10月16日,在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.(1)根据以上数据完成下列2×2列联表:关注不关注合计“80后”“70后”合计(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。参考公式:K2=(n=a+b+c+d)附表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.82822.(10分)已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)甲部门678乙部门5.566.577.58丙部门55.566.578.5(1)求该单位乙部门的员工人数?(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

依换底公式可得,从而得出,而根据对数函数的单调性即可得出,从而得出,,的大小关系.【详解】由于,;,又,.故选.【点睛】本题主要考查利用对数函数的单调性比较大小以及换底公式的应用.2、A【解析】试题分析:设P(x,y),则,,所以,所以P点轨迹为,根据条件,可以整理得到:,所以M,Q,N三点共线,即Q点在直线MN上,由M(8,0),N(0,8)可知Q点在直线上运动,所以的最小值问题转化为圆上点到直线的最小距离,即圆心到直线的距离减去圆的半径,。考点:1.平面向量的应用;2.直线与圆的位置关系。3、D【解析】

先由对称性求出,再利用即得解.【详解】由于随机变量,关于对称,故故选:D【点睛】本题考查了正态分布在给定区间的概率,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.4、B【解析】

将两曲线方程化为普通方程,可得知两曲线均为圆,计算出两圆圆心距,并将圆心距与两圆半径差的绝对值和两半径之和进行大小比较,可得出两曲线的位置关系.【详解】在曲线的极坐标方程两边同时乘以,得,化为普通方程得,即,则曲线是以点为圆心,以为半径的圆,同理可知,曲线的普通方程为,则曲线是以点为圆心,以为半径的圆,两圆圆心距为,,,,因此,曲线与相交,故选:B.【点睛】本题考查两圆位置关系的判断,考查曲线极坐标方程与普通方程的互化,对于这类问题,通常将圆的方程化为标准方程,利用两圆圆心距与半径和差的大小关系来得出两圆的位置关系,考查分析问题和解决问题的能力,属于中等题.5、D【解析】试题分析:由题意得考点:复数运算6、A【解析】

根据三视图知:几何体为半球和圆柱和圆锥的组合体,计算表面积得到答案.【详解】根据三视图知:几何体为半球和圆柱和圆锥的组合体..故选:.【点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.7、B【解析】

模拟程序运行,观察变量值的变化,判断循环条件.【详解】程序运行中,变量值变化如下:,判断循环条件,满足,,判断循环条件,满足,……,,判断循环条件,满足,,,判断循环条件,这里应不满足,输出.故条件为.判断框中填入,故选:B.【点睛】本题考查程序框图,解题时可模拟程序运行,根据输出结论确定循环条件.8、B【解析】

由题意,函数在上单调递减,又由函数是定义上的偶函数,得到函数在单调递增,把不等式转化为,即可求解.【详解】易知函数在上单调递减,又函数是定义在上的偶函数,所以函数在上单调递增,则由,得,即,即在上恒成立,则,解得,即的最大值为.【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.9、B【解析】名会唱歌的从中选出两个有种,名会跳舞的选出名有种选法,但其中一名既会唱歌又会跳舞的有一个,两组不能同时用他,共有种,故选B.10、D【解析】由题设,解之得:或,又集合中元素是互异性可得,应选答案D。11、A【解析】

利用不等式的性质和充分必要条件的定义进行求解;【详解】∵可得或,

∴由“”能推出“”,但由“”推不出“”,

∴“”是“”的充分非必要条件,

故选A.【点睛】本题主要考查不等式的基本性质和充分必要条件,属于基础题.12、C【解析】

分析:利用一元二次不等式的解法求出中不等式的解集确定出,然后利用交集的定义求解即可.详解:由中不等式变形得,解得,即,因为,,故选C.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.本题需注意两集合一个是有限集,一个是无限集,按有限集逐一验证为妥.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

利用函数的奇偶性和单调性,可得对恒成立,通过参变分离即得且对恒成立,求得相应的最大值和最小值,从而得到的取值范围.【详解】解:定义在R上的函数满足为偶函数对任意的不相等的实数,有成立在上单调递减,在上单调递增由在上恒成立得在上恒成立在上恒成立,即对恒成立此时且对恒成立设,则令,解得,随的变化如下表0当时,设,则当时,在上单调递减,即当时,则.综上所述,故答案为:.【点睛】本题考查了函数的奇偶性,考查了函数的单调性在解抽象不等式得应用,考查了运用导数求最值的方法.若对任意的不相等的实数,有成立,说明在区间上为减函数;若对任意的不相等的实数,有成立,说明在区间上为增函数.在解抽象不等式时,常常利用函数的单调性将抽象不等式转化为具体不等式.对于含参不等式在某区间上恒成立时,常常采用参变分离的方法,通过求出分离参数后函数的最大值或者最小值,来确定参数的取值范围.14、【解析】

利用分类讨论思想的应用和分类讨论思想的应用求出的取值范围.【详解】解:当时,由,解得或,在,上是增函数,且,,所以在上有零点,由题意知,由故或,又.当时,解得有两个零点,不合题意.当时,增区间为,减区间为和且,当时,则由单调性及极值可知,有唯一零点,但零点大于0,当时,则有三个零点,∴无论正负都不合适.所以.故答案为:.【点睛】本题考查函数导数的应用,利用函数的导数求函数的单调区间和最值,函数的零点和方程的根的关系式的的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.15、【解析】

根据二次函数的图象以及基本不等式的性质即可得到结论.【详解】由于当x>0时,f(x)=x++t在x=1时取得最小值为2+t,由题意当x≤0时,f(x)=(x﹣t)2,若t≥0,此时最小值为f(0)=t2,故t2≤t+2,即t2﹣t﹣2≤0,解得﹣1≤t≤2,此时0≤t≤2,若t<0,则f(t)<f(0),条件不成立.故答案为:[0,2].【点睛】本题主要考查函数最值的应用,根据分段函数的性质,结合二次函数的图象和性质是解决本题的关键.16、4【解析】,由的图像在处的切线方程为,易知,即,,即,则,故答案为4.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】试题分析:(1)由已知,根据解析式中绝对值的零点(即绝对值等于零时的值),将函数的定义域分成若干段,从而去掉绝对值号,再分别计算各段函数的相应不等式的解集,从而求出原不等式的解集;(2)由题意,将不等式转化为,可构造新函数,则问题再转化为,由(1)可得,即,从而问题可得解.试题解析:(1)因为,所以当时,由得;当时,由得;当时,由得.综上,的解集为.(2)(方法一)由得,因为,当且仅当取等号,所以当时,取得最小值5,所以当时,取得最小值5,故,即的取值范围为.(方法二)设,则,当时,取得最小值5,所以当时,取得最小值5,故,即的取值范围为.18、(1),;(2).【解析】

(1)先将曲线的参数方程化为普通方程,再化为极坐标方程;根据直线过原点,即可得的极坐标方程.(2)联立直线的极坐标方程与曲线的极坐标方程,根据极径的关系代入即可求得的值.【详解】(1)由曲线的参数方程为(为参数),得曲线的普通方程为,所以曲线的极坐标方程为,即.因为直线过原点,且倾斜角为,所以直线的极坐标方程为.(2)设点,对应的极径分别为,,由,得,所以,,又,,所以.【点睛】本题考查了参数方程、普通方程和极坐标方程的转化,利用极坐标求线段和,属于中档题.19、(1)0;(2)1;(2),证明见解析.【解析】

(1)先求的定义域,然后对求导,令寻找极值点,从而求出极值与最值;(2)构造函数,又,则只需恒成立,再证在处取到最小值即可;(3)有两个极值点等价于方程在上有两个不等的正根,由此可得的取值范围,,由根与系数可知及范围为,代入上式得,利用导函数求的最小值即可.【详解】(1),,令G′(x)>0,解得x>1,此时函数G(x)单调递增,令G′(x)<0,解得0<x<1,此时函数G(x)单调递减,又G′(1)=0,∴x=1是函数G(x)的极小值点,也是最小值,且G(1)=0.当时,的最小值为0.(2)令,则.所以即恒成立的必要条件是,又,由得:.当时,,知,故,即恒成立.(3)由,得.有两个极值点、等价于方程在上有两个不等的正根,即:,解得.由,得,其中.所以.设,得,所以,即.【点睛】本题考查导数的应用,包括利用导数求函数的最值、利用导数求参数取值范围,不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得到解决.属于难题.20、(1)直线的普通方程为,曲线的直角坐标方程为;(2).【解析】分析:(1)直线的参数方程为:(为参数),消去t即可;曲线的极坐标方程为,利用直角坐标与极坐标之间的互化公式即可;(2)转换成直角坐标去进行求解.详解:(1)因为直线的参数方程为,得,故直线的普通方程为,又曲线的极坐标方程为,即,因为,,∴,即,故曲线的直角坐标方程为.(2)因为点的极坐标为,∴点的直角坐标为,∴点到直线的距离.将,代入中得,,,,∴的面积.点睛:求解与极坐标有关的问题的主要方法(1)直接利用极坐标系求解,可与数形结合思想配合使用;(2)转化为直角坐标系,用直角坐标求解.使用后一种方法时,应注意若结果要求的是极坐标,还应将直角坐标化为极坐标.21、(1)见解析;(2)见解析【解析】试题分析:(1)根据题设中的数据,即可填写的列联表;(2)利用独立性检验的公式,计算的值,即可作出预测.试题解析:(1)2X2列联表:(2)根据列联表计算K2=≈11.11>10.828对照观测值得:能在犯错误的概率不超过0.001的前提下认为“关注”与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论