2022-2023学年广东省惠州市惠州一中学八年级数学第二学期期末统考模拟试题含解析_第1页
2022-2023学年广东省惠州市惠州一中学八年级数学第二学期期末统考模拟试题含解析_第2页
2022-2023学年广东省惠州市惠州一中学八年级数学第二学期期末统考模拟试题含解析_第3页
2022-2023学年广东省惠州市惠州一中学八年级数学第二学期期末统考模拟试题含解析_第4页
2022-2023学年广东省惠州市惠州一中学八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列各曲线中不能表示y是x的函数是()2.一次函数y=﹣2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.24.如图所示.在△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,若AB=6cm,则△DEB的周长为()A.12cm B.8cm C.6cm D.4cm5.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是()A. B. C. D.6.下列方程,是一元二次方程的是()①,②,③,④A.①② B.①②④ C.①③④ D.②④7.化简的结果是()A.-2 B.2 C. D.48.化简(+2)的结果是()A.2+2 B.2+ C.4 D.39.如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为()A.3 B.2 C.2 D.10.已知直线不经过第一象限,则的取值范围是().A. B. C. D.二、填空题(每小题3分,共24分)11.某次越野跑中,当小明跑了1600m时,小刚跑了1400m,小明和小刚在此后时间里所跑的路程y(m)与时间t(s)之间的函数关系如图所示,则这次越野跑全程为________m.12.某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x个班级参赛,根据题意,可列方程为_____.13.如图,把放在平面直角坐标系中,,,点A、B的坐标分别为、,将沿x轴向右平移,当点C落在直线上时,线段BC扫过的面积为______.14.八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_________.16.等腰梯形的上底是10cm,下底是16cm,高是4cm,则等腰梯形的周长为______cm.17.已知,则的值为__________.18.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是______.三、解答题(共66分)19.(10分)已知,二次函数≠0的图像经过点(3,5)、(2,8)、(0,8).①求这个二次函数的解析式;②已知抛物线≠0,≠0,且满足≠0,1,则我们称抛物线互为“友好抛物线”,请写出当时第①小题中的抛物线的友好抛物线,并求出这“友好抛物线”的顶点坐标.20.(6分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.21.(6分)如图,已知BC∥EF,BC=EF,AF=DC.试证明:AB=DE.22.(8分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:月销售量(件)1455537302418人数(人)112532(1)求这14位营销人员该月销售量的平均数和中位数(2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.23.(8分)计算:(1);(2);(3)先化简再求值,其中,.24.(8分)八(1)班数学老师将本班某次参加的数学竞赛成绩(得分取整数,满分100分)进行整理统计后,制成如下的频数直方图和扇形统计图,请根据统计图提供的信息,解答下列问题:(1)在分数段70.5~80.5分的频数、频率分别是多少?(2)m、n、的值分别是多少?25.(10分)如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.26.(10分)如图,在四边形ABCD中,AD∥BC,AC与BD交于点E,点E是BD的中点,延长CD到点F,使DF=CD,连接AF,(1)求证:AE=CE;(2)求证:四边形ABDF是平行四边形;(3)若AB=2,AF=4,∠F=30°,则四边形ABCF的面积为.

参考答案一、选择题(每小题3分,共30分)1、B【解析】A、能表示y是x的函数,故本选项不符合题意;B、能表示y是x的函数,故本选项不符合题意;C、不能表示y是x的函数,故本选项符合题意;D、能表示y是x的函数,故本选项不符合题意.故选C.2、C【解析】

先根据一次函数y=﹣2x+1中k=﹣2,b=1判断出函数图象经过的象限,进而可得出结论.【详解】解:∵一次函数y=﹣2x+1中k=﹣2<0,b=1>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数图象经过一、二、四象限.3、C【解析】过点P作PE⊥BC于E,

∵AB∥CD,PA⊥AB,

∴PD⊥CD,

∵BP和CP分别平分∠ABC和∠DCB,

∴PA=PE,PD=PE,

∴PE=PA=PD,

∵PA+PD=AD=8,

∴PA=PD=1,

∴PE=1.

故选C.4、C【解析】∵∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E.∴DE=DC,∴AE=AC=BC,∴BE+DE+BD=BD+DC+BE=BC+BE=AC+BE=AE+BE=AB=6cm.故选C.5、C【解析】

根据中心对称图形的概念进行分析.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误;

故选:C.【点睛】考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、D【解析】

只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.结合题意进行分析即可得到答案.【详解】①,含有两个未知数,不是一元二次方程;②,是一元二次方程;③不是一元二次方程;④,是一元二次方程;由此知②④是一元二次方程,故选D.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程的定义.7、B【解析】

先将括号内的数化简,再开根号,根据开方的结果为正数可得出答案.【详解】==2,故选:B.【点睛】本题考查了二次根式的化简,解此类题目要注意算术平方根为非负数.8、A【解析】试题解析:(+2)=2+2.故选A.9、D【解析】

作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.【详解】过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,在直角三角形BDF中,BF=BC+CF=1+1=2,根据勾股定理得:BD=,故选D.【点睛】本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.10、D【解析】试题解析:∵直线不经过第一象限,则有:解得:.故选.二、填空题(每小题3分,共24分)11、1【解析】

根据函数图象可以列出相应的二元一次方程组,从而可以解答本题.【详解】设小明从1600处到终点的速度为a米/秒,小刚从1400米处到终点的速度为b米/秒,由题意可得:小明跑了100秒后还需要200秒到达终点,而小刚跑了100秒后还需要100秒到达终点,则,解得:,故这次越野跑的全程为:1600+300×2=1600+600=1(米),即这次越野跑的全程为1米.故答案为:1.【点睛】本题考查了一次函数的应用、二元一次方程组的应用,解题的关键是明确题意,列出相应的方程组,利用数形结合的思想解答问题.12、【解析】

设共有x个班级参赛,根据每一个球队和其他球队都打(x﹣1)场球,但每两个球队间只有一场比赛,可得总场次=×球队数×(球队数-1),据此列方程即可.【详解】有x个班级参赛,根据题意,得=15,故答案为:=15.【点睛】本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.13、14【解析】

先求AC的长,即求C的坐标,由平移性质得,平移的距离,因此可求线段BC扫过的面积.【详解】点A、B的坐标分别为、,,在中,,,,,由于沿x轴平移,点纵坐标不变,且点C落在直线上时,,,平移的距离为,扫过面积,故答案为:14【点睛】本题考查了一次函数图象上点的坐标特征,平移的性质,关键是找到平移的距离.14、70%【解析】

利用合格的人数即50-10-5=35人,除以总人数即可求得.【详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.

故答案是:70%.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15、【解析】

解:如图,延长CF交AB于点G,∵在△AFG和△AFC中,∠GAF=∠CAF,AF=AF,∠AFG=∠AFC,∴△AFG≌△AFC(ASA).∴AC=AG,GF=CF.又∵点D是BC中点,∴DF是△CBG的中位线.∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.16、1.【解析】

首先根据题意画出图形,过A,D作下底BC的垂线,从而可求得BE的长,根据勾股定理求得AB的长,这样就可以求得等腰梯形的周长了.【详解】解:过A,D作下底BC的垂线,

则BE=CF=(16-10)=3cm,

在直角△ABE中根据勾股定理得到:

AB=CD==5,

所以等腰梯形的周长=10+16+5×2=1cm.

故答案为:1.【点睛】本题考查等腰梯形的性质、勾股定理.注意掌握数形结合思想的应用.17、【解析】

根据二次根式有意义的条件可求得x的值,继而可求得y值,代入所求式子即可求得答案.【详解】由题意得,解得:x=4,所以y=3,所以=,故答案为:.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.18、【解析】

根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有12个,而能构成一个轴对称图形的有2个情况(如图所示)∴使图中黑色部分的图形构成一个轴对称图形的概率是.三、解答题(共66分)19、(1);(2)(1,-18)或(1,)【解析】(1)先把三个点的坐标的人y=ax2+bx+c=0(a≠0)得到关于a、b、c的方程组,然后解方程组求出a、b、c的值;(2)根据图中的定义得到===-或===-,则可得到友好抛物线的解析式是:y=2x2-4x-16或y=x2-x-4,然后分别配成顶点式,则可得到它们的顶点坐标.解:(1)根据题意,得可以解得,∴这个抛物线的解析式是.(2)根据题意,得或解得a2=2,b2=-4,c2=-16或a1=,b1=-1,c1=-4,,友好抛物线的解析式是:y=2x2-4x-16或y=x2-x-4,∴它的顶点坐标是(1,-18)或(1,)“点睛”二次函数是初中数学的一个重要内容之一,其中解析式的确定一般都采用待定系数法求解,但是要求学生根据给出的已知条件的不同,要能够恰当地选取合适的二次函数解析式的形式,选择得当则解题简捷,若选择不得当,就会增加解题的难度.20、(1)y=﹣2x﹣1;(2)2【解析】

(1)根据y轴上点的坐标特征可求B点坐标,再根据OB=2OC,可求C点坐标,根据点A的纵坐标为1,可求A点坐标,根据待定系数法可求直线l2的解析式;(2)根据点D的横坐标为1,可求D点坐标,再用长方形面积减去1个小三角形面积即可求解.【详解】解:(1)∵当x=0时,y=0+6=6,∴B(0,6),∵OB=2OC,∴C(0,﹣1),∵点A的纵坐标为1,∴﹣1=x+6,解得x=﹣1,∴A(﹣1,1),则,解得.故直线l2的解析式为y=﹣2x﹣1;(2)∵点D的横坐标为1,∴y=1+6=7,∴D(1,7),∴△ACD的面积=10×4﹣×1×6﹣×4×4﹣×1×10=2.【点睛】考查了一次函数图象与几何变换,两条直线相交或平行问题,待定系数法,关键是求出C点坐标,A点坐标,D点坐标.21、证明见解析【解析】

首先根据平行线的性质可得∠BCA=∠EFD,再根据AF=DC可得AC=DF,然后可以证明△ABC≌△DEF,再根据全等三角形的性质可得AB=DE.【详解】∵BC∥EF(已知),∴∠BCA=∠EFD(两直线平行,内错角相等)∵AF=DC(已知),∴AF+FC=DC+FC,即AC=DF.在△ABC和△DEF中,∵,∴△ABC≌△DEF(SAS),∴AB=DE(全等三角形的对应边相等).【点睛】全等三角形的判定与性质,以及平行线的性质,关键是掌握证明三角形全等的判定方法:SSS、ASA、SAS、AAS.22、(1)平均数38(件);中位数:30(件);(2)答案见解析【解析】

(1)按照平均数,中位数的定义分别求得.(2)根据平均数,中位数的意义回答.【详解】(1)解:平均数=38(件)中位数:30(件)(2)解:定额为38件,因为平均数反映平均程度;或:定额为30件,因为中位数可以反映一半员工的工作状况,把一半以上作为目标;或:除去最高分、最低分的平均数为=30.75≈31(件)因为除去极端情形较合理.【点睛】本题考查了学生对平均数、中位数的计算及运用其进行分析的能力.23、(1);(2);(3),2.【解析】

(1)原式利用多项式乘以多项式法则计算即可求出值;

(2)原式利用完全平方公式,以及平方差公式化简,去括号合并即可得到结果;

(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【详解】解:(1);(2);(3)当,时,原式.故答案为:(1);(2);(3),2.【点睛】本题考查整式的混合运算-化简求值,熟练掌握运算法则是解题的关键.24、(1)在分数段70.5~80.5分的频数是18,频率是36%.(2)m=8,n=12,=72°.【解析】

(1)根据直方图和扇形统计图直接得出即可;(2)用(1)题中在分数段70.5~80.5分的频数÷频率可得总人数,然后用在分数段50.5~60.5分的人数÷总人数即可求出m,用1减去其余4个组的频率即得n的值,然后用360°×20%即得的度数.【详解】解:(1)由频数分布直方图可得:在分数段70.5~80.5分的频数为18,由扇形统计图可得:在分数段70.5~80.5分的频率是36%;(2)18÷36%=50,在分数段50.5~60.5分的频率是:4÷50=8%,所以m=8,在90.5~100.5分的频率:1-36%-24%-8%-20%=12%,所以n=12,360°×20%=72°,所以=72°.【点睛】本题考查了频数分布直方图和扇形统计图的知识,属于常考题型,正确读懂统计图提供的信息、熟练掌握二者的联系是解答的关键.25、(1);(2)见解析,AB、CD、EF三条线段的长能成为一个直角三角形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论