数字城市场景AI解决方案产业可行性分析_第1页
数字城市场景AI解决方案产业可行性分析_第2页
数字城市场景AI解决方案产业可行性分析_第3页
数字城市场景AI解决方案产业可行性分析_第4页
数字城市场景AI解决方案产业可行性分析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字城市场景AI解决方案产业可行性分析

通过互联网促进能源系统扁平化,推进能源生产与消费模式革命,提高能源利用效率,推动节能减排。加强分布式能源网络建设,提高可再生能源占比,促进能源利用结构优化。加快发电设施、用电设施和电网智能化改造,提高电力系统的安全性、稳定性和可靠性。着力做大高端移动智能终端产品和服务的市场规模,提高移动智能终端核心技术研发及产业化能力。鼓励企业积极开展差异化细分市场需求分析,大力丰富可穿戴设备的应用服务,提升用户体验。推动互联网技术以及智能感知、模式识别、智能分析、智能控制等智能技术在机器人领域的深入应用,大力提升机器人产品在传感、交互、控制等方面的性能和智能化水平,提高核心竞争力。人工智能芯片市场的未来发展趋势(一)芯片行业整体受到政策鼓励支持,AI芯片发展受益国内需求和国产化进程芯片是信息化时代、数字化时代的基石。中国作为全球最大的半导体消费市场,芯片自给率不足,严重依赖进口。为发展国产芯片,实现进口替代,近年来政府出台了一系列政策支持国产芯片行业发展。2020年8月,《新时期促进集成电路产业和软件产业高质量发展的若干政策》提出将从财税、投融资、研究开发、进出口、人才、知识产权、市场应用、国际合作等8个方面对集成电路和软件产业进行扶持,以加快集成电路和软件产业发展。AI芯片的发展将受益于芯片国产化的政策支持和庞大的国内市场需求。(二)AI芯片研发将从技术导向转向场景导向目前AI芯片设计更多的是从技术需求的角度出发,如芯片架构的选择、芯片性能指标提升等。随着AI芯片领域的竞争越来越激烈,各芯片企业除了在技术层面有所突破,还需加大应用场景的布局,以抢占更多的发展机遇。为了适应碎片化的应用市场,未来的芯片设计需要以客户终端需求为导向,从需求量、商业落地模式、市场壁垒等各个方面综合分析落地的可行性,借助场景落地实现AI芯片的规模发展。(三)AI芯片发展从侧重云端向端云一体化发展云端芯片聚焦非实时、长周期数据的大数据分析,能够支持大量运算共同运行,目前云端AI芯片应用已经相对成熟。随着智能音箱、自动驾驶、无人机、安防监控等应用的丰富,云端的部分推理乃至训练算力将迁移至边缘和终端侧,支撑本地业务的实时智能化处理与执行。边缘和终端侧对AI芯片的需求更为多样、更强调低功耗低成本、技术要求相对较低。得益于人工智能等多种因素的推动,边缘计算将逐渐在公共安防、智能家居、智能交通等诸多领域应用。随着边缘计算兴起,端云一体化的算力布局方案渐成主流,不仅可以实现对算法结构的优化,还从本质上赋能各边缘和终端应用,提供更好更完整的解决方案。人工智能芯片行业人工智能芯片指应用在人工智能算法加速,主要实现大规模并行计算的芯片。而在更广泛的概念下,任何应用在人工智能领域的芯片都可被称为人工智能芯片。(一)人工智能芯片以技术路线分类深度学习架构下的人工智能芯片以技术路线进行划分,主要包括GPU、FPGA、ASIC、ASIP等类别。GPU使用SIMD让多个执行单元同时处理不同的数据,其离散化和分布式的特征,以及用矩阵运算替代布尔运算的设计使之适合处理深度学习所需要的非线性离散数据。与同样基于冯•诺依曼架构的CPU不同的是,在传统的冯•诺依曼结构中,CPU每执行一条指令都需要存储读取、指令分析、分支跳转才能进行运算,从而限制了处理器的性能;而GPU大部分的晶体管可以组成各类专用电路、多条流水线,运算单元明显增多,适合大规模的并行计算。GPU拥有更多的ALU用于数据处理,这样的结构适合对密集型数据进行并行处理,获得高于CPU几十倍甚至上千倍的运行速度。在云端,通用GPU,被广泛应用于深度神经网络训练和推理。但是,GPU并非专门针对AI算法,在执行算法中能耗相对较高、效率相对较低,有一定的时延问题。FPGA利用门电路直接运算,而用户可以自由定义这些门电路和存储器之间的布线,改变执行方案。其基本原理是集成大量的基本门电路以及存储器,通过大量的可编程逻辑单元实现针对性的算法设计,即实现以硬件定义软件。FPGA通过可编程逻辑综合,在并行计算上能够获得和GPU接近的并行计算性能,相比CPU,有明显的性能提升,同时在功耗上优势明显在深度学习算法仍处于高速迭代的状态下,FPGA因其可重构特性而具有显著优势。FPGA市场化的阻碍主要在于高昂的硬件和开发成本,编程相对复杂,为实现重构而降低了计算资源占比,整体运算能力受到影响。ASIC则为专用定制芯片的统称,在架构、设计、成本等方面存在更大的多样性,其中VPU是为图像处理和视觉处理设计的定制芯片。ASIC的架构相对简单,性能和功耗与通用型产品相比更低。由于不需要包含FPGA用于实现重构的可配置片上路由与连线,相同工艺的ASIC计算芯片可以拥有FPGA5-10倍的运算速度,实现PPA最优化设计。ASIC针对场景的定制化设计使其更适合终端推理场景,而如今它的主要劣势在于初期设计的资金投入和研发周期,且针对性设计限制了芯片的通用性。ASIP是一种新型的定制化指令集的处理器芯片,它为某个或某一类型应用而专门设计,通过权衡速度、功耗、成本、灵活性等多个方面的设计约束,设计者可以定制ASIP以达到最好的平衡点,从而适应嵌入式系统的需要。ASIP集合了FPGA和ASIC各自的优点,不仅可以提供ASIC级别的高性能和低功耗,还能提供处理器级别的指令集灵活性,实现可重新编程,更适用于需求尚未被明确定义、需要芯片具备一定通用性和可编程性的应用场景,从而满足AI算法快速更新迭代的需求,并延长芯片的使用生命周期。相对GPUCPU具备同等的指令集灵活性,执行效率、功耗、能量效率方面相比CPU、GPU有1-2个数量级的优势。相对DSP在视觉人工智能算法上的执行效率上高2-5倍,功耗只有其1/2-1/3。相对ASIC具有后向算法可编程的灵活性,更适合深度学习AI算法的演进和迭代部署。相对FPGA具有高性能、低成本的优势,成本方面有百倍级的成本优势。未来,类脑芯片的神经拟态计算将带来更大的想象空间,其内存、CPU和通信部件将集成为一体,信息处理可以在本地进行。类脑芯片的设计目的也将不局限于加速深度学习算法,而是在芯片结构甚至器件层面上改变设计,开发出全新的类脑计算机体系结构。目前此项技术还尚未得到大规模应用,但很有可能成为行业内长期发展的路径和方向。(二)人工智能芯片行业市场规模与行业构成市场规模方面,AI芯片的需求正在快速扩大,根据艾媒咨询的预测,全球AI芯片市场规模将在未来五年内飙升,预计将从2019年的110亿美元增长至2025年的726亿美元。赛迪顾问则预测中国AI芯片市场规模将从2019年的124.1亿元增长至2021年的305.7亿元,预计未来几年仍将以超过50%的速度快速增长。根据赛迪数据报告,从行业结构分布来看,在2021年安防行业是AI芯片落地应用的最大市场,市场规模达到51.1亿元,占比16.72%。其余用途比较广泛的场景还包括零售、医疗、教育、制造、金融、物流、交通等领域。根据应用场景,AI芯片可分为云端芯片、边缘端芯片和终端芯片,再根据功能可分为训练芯片和推断芯片。近年来,宏观政策的大力支持和人工智能的普遍应用促进了AI芯片市场的高速扩张。赛迪顾问预测,2021年我国AI芯片市场规模将达到305.7亿元,2019至2021年市场规模的年化增长率均超过50%。尤其对于终端推断芯片市场,随着人工智能应用生态的逐步建立,AI应用将被更为广泛地部署在终端设备,其市场规模年化增长率将保持在60%以上。而根据甲子光年的统计,2020年中国云端AI芯片的市场规模可以达到111.7亿元,边缘与终端芯片为39亿元。但人工智能在安防、家居、商业等应用领域的大规模落地为边缘与终端芯片带来了更大的市场契机,该市场2018至2023年复合增长率将达到62.2%。互联网+电子商务巩固和增强我国电子商务发展领先优势,大力发展农村电商、行业电商和跨境电商,进一步扩大电子商务发展空间。电子商务与其他产业的融合不断深化,网络化生产、流通、消费更加普及,标准规范、公共服务等支撑环境基本完善。(一)积极发展农村电子商务开展电子商务进农村综合示范,支持新型农业经营主体和农产品、农资批发市场对接电商平台,积极发展以销定产模式。完善农村电子商务配送及综合服务网络,着力解决农副产品标准化、物流标准化、冷链仓储建设等关键问题,发展农产品个性化定制服务。开展生鲜农产品和农业生产资料电子商务试点,促进农业大宗商品电子商务发展。(二)大力发展行业电子商务鼓励能源、化工、钢铁、电子、轻纺、医药等行业企业,积极利用电子商务平台优化采购、分销体系,提升企业经营效率。推动各类专业市场线上转型,引导传统商贸流通企业与电子商务企业整合资源,积极向供应链协同平台转型。鼓励生产制造企业面向个性化、定制化消费需求深化电子商务应用,支持设备制造企业利用电子商务平台开展融资租赁服务,鼓励中小微企业扩大电子商务应用。按照市场化、专业化方向,大力推广电子招标投标。(三)推动电子商务应用创新鼓励企业利用电子商务平台的大数据资源,提升企业精准营销能力,激发市场消费需求。建立电子商务产品质量追溯机制,建设电子商务售后服务质量检测云平台,完善互联网质量信息公共服务体系,解决消费者维权难、退货难、产品责任追溯难等问题。加强互联网食品药品市场监测监管体系建设,积极探索处方药电子商务销售和监管模式创新。鼓励企业利用移动社交、新媒体等新渠道,发展社交电商、粉丝经济等网络营销新模式。(四)加强电子商务国际合作鼓励各类跨境电子商务服务商发展,完善跨境物流体系,拓展全球经贸合作。推进跨境电子商务通关、检验检疫、结汇等关键环节单一窗口综合服务体系建设。创新跨境权益保障机制,利用合格评定手段,推进国际互认。创新跨境电子商务管理,促进信息网络畅通、跨境物流便捷、支付及结汇无障碍、税收规范便利、市场及贸易规则互认互通。互联网+现代农业利用互联网提升农业生产、经营、管理和服务水平,培育一批网络化、智能化、精细化的现代种养加生态农业新模式,形成示范带动效应,加快完善新型农业生产经营体系,培育多样化农业互联网管理服务模式,逐步建立农副产品、农资质量安全追溯体系,促进农业现代化水平明显提升。(一)构建新型农业生产经营体系鼓励互联网企业建立农业服务平台,支撑专业大户、家庭农场、农民合作社、农业产业化龙头企业等新型农业生产经营主体,加强产销衔接,实现农业生产由生产导向向消费导向转变。提高农业生产经营的科技化、组织化和精细化水平,推进农业生产流通销售方式变革和农业发展方式转变,提升农业生产效率和增值空间。规范用好农村土地流转公共服务平台,提升土地流转透明度,保障农民权益。(二)发展精准化生产方式推广成熟可复制的农业物联网应用模式。在基础较好的领域和地区,普及基于环境感知、实时监测、自动控制的网络化农业环境监测系统。在大宗农产品规模生产区域,构建天地一体的农业物联网测控体系,实施智能节水灌溉、测土配方施肥、农机定位耕种等精准化作业。在畜禽标准化规模养殖基地和水产健康养殖示范基地,推动饲料精准投放、疾病自动诊断、废弃物自动回收等智能设备的应用普及和互联互通。(三)提升网络化服务水平深入推进信息进村入户试点,鼓励通过移动互联网为农民提供政策、市场、科技、保险等生产生活信息服务。支持互联网企业与农业生产经营主体合作,综合利用大数据、云计算等技术,建立农业信息监测体系,为灾害预警、耕地质量监测、重大动植物疫情防控、市场波动预测、经营科学决策等提供服务。(四)完善农副产品质量安全追溯体系充分利用现有互联网资源,构建农副产品质量安全追溯公共服务平台,推进制度标准建设,建立产地准出与市场准入衔接机制。支持新型农业生产经营主体利用互联网技术,对生产经营过程进行精细化信息化管理,加快推动移动互联网、物联网、二维码、无线射频识别等信息技术在生产加工和流通销售各环节的推广应用,强化上下游追溯体系对接和信息互通共享,不断扩大追溯体系覆盖面,实现农副产品从农田到餐桌全过程可追溯,保障舌尖上的安全。互联网+便捷交通加快互联网与交通运输领域的深度融合,通过基础设施、运输工具、运行信息等互联网化,推进基于互联网平台的便捷化交通运输服务发展,显著提高交通运输资源利用效率和管理精细化水平,全面提升交通运输行业服务品质和科学治理能力。(一)提升交通运输服务品质推动交通运输主管部门和企业将服务性数据资源向社会开放,鼓励互联网平台为社会公众提供实时交通运行状态查询、出行路线规划、网上购票、智能停车等服务,推进基于互联网平台的多种出行方式信息服务对接和一站式服务。加快完善汽车健康档案、维修诊断和服务质量信息服务平台建设。(二)推进交通运输资源在线集成利用物联网、移动互联网等技术,进一步加强对公路、铁路、民航、港口等交通运输网络关键设施运行状态与通行信息的采集。推动跨地域、跨类型交通运输信息互联互通,推广船联网、车联网等智能化技术应用,形成更加完善的交通运输感知体系,提高基础设施、运输工具、运行信息等要素资源的在线化水平,全面支撑故障预警、运行维护以及调度智能化。(三)增强交通运输科学治理能力强化交通运输信息共享,利用大数据平台挖掘分析人口迁徙规律、公众出行需求、枢纽客流规模、车辆船舶行驶特征等,为优化交通运输设施规划与建设、安全运行控制、交通运输管理决策提供支撑。利用互联网加强对交通运输违章违规行为的智能化监管,不断提高交通运输治理能力。互联网+益民服务(一)发展便民服务新业态发展体验经济,支持实体零售商综合利用网上商店、移动支付、智能试衣等新技术,打造体验式购物模式。发展社区经济,在餐饮、娱乐、家政等领域培育线上线下结合的社区服务新模式。发展共享经济,规范发展网络约租车,积极推广在线租房等新业态,着力破除准入门槛高、服务规范难、个人征信缺失等瓶颈制约。发展基于互联网的文化、媒体和旅游等服务,培育形式多样的新型业态。积极推广基于移动互联网入口的城市服务,开展网上社保办理、个人社保权益查询、跨地区医保结算等互联网应用,让老百姓足不出户享受便捷高效的服务。(二)推广在线医疗卫生新模式发展基于互联网的医疗卫生服务,支持第三方机构构建医学影像、健康档案、检验报告、电子病历等医疗信息共享服务平台,逐步建立跨医院的医疗数据共享交换标准体系。积极利用移动互联网提供在线预约诊疗、候诊提醒、划价缴费、诊疗报告查询、药品配送等便捷服务。引导医疗机构面向中小城市和农村地区开展基层检查、上级诊断等远程医疗服务。鼓励互联网企业与医疗机构合作建立医疗网络信息平台,加强区域医疗卫生服务资源整合,充分利用互联网、大数据等手段,提高重大疾病和突发公共卫生事件防控能力。积极探索互联网延伸医嘱、电子处方等网络医疗健康服务应用。鼓励有资质的医学检验机构、医疗服务机构联合互联网企业,发展基因检测、疾病预防等健康服务模式。(三)促进智慧健康养老产业发展支持智能健康产品创新和应用,推广全面量化健康生活新方式。鼓励健康服务机构利用云计算、大数据等技术搭建公共信息平台,提供长期跟踪、预测预警的个性化健康管理服务。发展第三方在线健康市场调查、咨询评价、预防管理等应用服务,提升规范化和专业化运营水平。依托现有互联网资源和社会力量,以社区为基础,搭建养老信息服务网络平台,提供护理看护、健康管理、康复照料等居家养老服务。鼓励养老服务机构应用基于移动互联网的便携式体检、紧急呼叫监控等设备,提高养老服务水平。(四)探索新型教育服务供给方式鼓励互联网企业与社会教育机构根据市场需求开发数字教育资源,提供网络化教育服务。鼓励学校利用数字教育资源及教育服务平台,逐步探索网络化教育新模式,扩大优质教育资源覆盖面,促进教育公平。鼓励学校通过与互联网企业合作等方式,对接线上线下教育资源,探索基础教育、职业教育等教育公共服务提供新方式。推动开展学历教育在线课程资源共享,推广大规模在线开放课程等网络学习模式,探索建立网络学习学分认定与学分转换等制度,加快推动高等教育服务模式变革。发展目标(一)经济发展进一步提质增效互联网在促进制造业、农业、能源、环保等产业转型升级方面取得积极成效,劳动生产率进一步提高。基于互联网的新兴业态不断涌现,电子商务、互联网金融快速发展,对经济提质增效的促进作用更加凸显。(二)社会服务进一步便捷普惠健康医疗、教育、交通等民生领域互联网应用更加丰富,公共服务更加多元,线上线下结合更加紧密。社会服务资源配置不断优化,公众享受到更加公平、高效、优质、便捷的服务。(三)基础支撑进一步夯实提升网络设施和产业基础得到有效巩固加强,应用支撑和安全保障能力明显增强。固定宽带网络、新一代移动通信网和下一代互联网加快发展,物联网、云计算等新型基础设施更加完备。人工智能等技术及其产业化能力显著增强。(四)发展环境进一步开放包容全社会对互联网融合创新的认识不断深入,互联网融合发展面临的体制机制障碍有效破除,公共数据资源开放取得实质性进展,相关标准规范、信用体系和法律法规逐步完善。到2025年,网络化、智能化、服务化、协同化的互联网+产业生态体系基本完善,互联网+新经济形态初步形成,互联网+成为经济社会创新发展的重要驱动力量。视觉人工智能行业(一)视觉人工智能技术发展历程1、计算机视觉的定义计算机视觉技术赋予计算机人类双眼所拥有的分割、分类、识别、跟踪、判别等功能,通过构造多层的神经网络,识别不同层级的图像特征并在顶层做出判断和分类。2、计算机视觉的发展历程计算机视觉主要经历了以上三个发展阶段。伴随着同期互联网海量数据的爆发,各类数据集成为计算机视觉技术发展的土壤,而深度学习和深层神经网络理论最终带来最新一次的技术变革。2015年,视觉人工智能系统识别项目ImageNet比赛中,ResNet以3.57%的识别错误率首次超越人类视觉的5.1%。目前人脸识别准确率已经提升至97%以上。(二)视觉人工智能产业链简介与人工智能市场的产业链相似,视觉人工智能市场的产业链同样分为基础层、技术层与应用层。其中,基础层主要包括提供算力的芯片与提供信息采集功能的前端设备组成的硬件支持、相关底层技术支持,与海量信息数据;技术层则主要包括基于各类识别技术构建的软件产品、解决方案和技术平台;应用层则包括了各类视觉人工智能的应用场景。(三)视觉人工智能行业市场规模与行业构成作为人工智能产业中应用最为广泛的技术之一,计算机视觉技术拥有前景广阔的庞大市场。在2017年的爆发式增长后,我国计算机视觉市场近几年的增长趋缓,但仍处于较高水平。根据高工产研机器人研究所的数据,2019年中国计算机视觉应用市场达14.56亿美元。而根据沙利文咨询出具的研究,2019年中国计算机视觉市场规模达到219.6亿元。目前,视觉人工智能被广泛应用于各个行业,包括安防、零售、营销、医疗等等。其中,根据亿欧数据的研究,2018年中国计算机人脸识别市场中安防场景的应用占61.2%,根据前瞻研究院数据,2020年中国计算机视觉应用层份额中,安防影像分析占67.9%,国内明确的应用场景和强大的客户需求让AI技术在安防行业快速落地。在安防行业,视觉人工智能的应用场景包括门禁、智能摄像头等,依托人像识别技术,安防排查和管理效率得到显著提升。同时,根据中科院发布的《2019年人工智能发展白皮书》等,目前计算机视觉技术除了安防之外,较为典型的应用场景还包括:自动驾驶汽车需要使用计算机视觉技术。特斯拉等汽车制造商已经通过摄像头、激光雷达、雷达和超声波传感器从环境中获取图像,研发自动驾驶汽车来探测目标、车道标志和交通信号,从而安全驾驶。由于90%的医疗数据都是基于图像的,因此医学中的计算机视觉有很多用途。比如启用新的医疗诊断方法,分析X射线,X光检查,AI诊疗等。计算机视觉技术可以帮助工业制造商更安全、更智能、更有效地运行,比如预测性维护设备故障,对包装和产品质量进行监控,并通过计算机视觉技术识别和减少不合格产品。传统翻译采用人工查词的方式,不但耗时长,而且错误率高。图像识别技术的出现大幅提升了翻译的效率和准确度,用户通过简单的拍照、截图或划线就能得到准确的翻译结果。(四)视觉人工智能技术的场景应用举例视觉人工智能目前被广泛应用于多个行业,其功能和应用涉及到数据采集端终端,数据传输,数据存储、处理和输出端云端,通过云端和终端的密切配合,最终实现有效结果的输出。以安防场景为例,在一个完整的端云架构中,终端IoT设备主要用于数据采集,例如摄像机通过拍摄视频来采集数据,然后终端设备通过传播介质将数据传输至云端,再由云端进行批量的分析处理,最后输出分析结果。由于终端设备需要更多地考虑功耗和成本,过去在端侧仅部署较小的算力,更依靠云侧算力的支持。在数据呈现指数级增长的今天,一方面终端的视频流数据快速增长加重了传输渠道的负载,导致原有带宽无法支撑数据的及时、有效传输,进而影响了云端算力的科学调度;另一方面,数据量的指数级增长大幅提高了云端对并行运算数据峰值的要求,云侧的部署成本随着数据处理需求的极值增长而显著提高,但在数据处理的―平峰期,云端算力将存在无法得到充分、有效运用的情形。为了更好地平衡云侧和端侧的算力分布,实现整体效率的最大化,目前通过提升端侧和边缘侧的智能化水平和算力,实现整体算力分布的前置成为行业的新趋势。通过将部分算力和分析程序前置到终端设备,终端可以实现对数据的预处理,仅需将部分特征数据传至云端,甚至在本地完成对数据的完整分析。通过分布式算力部署,端侧设备形成的数据处理集群逐步向云侧设备融合。随着系统架构的不断

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论