版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
假设检验的基本概念ppt第1页,共50页,2023年,2月20日,星期日第一节
检验假设与P值第2页,共50页,2023年,2月20日,星期日
假设检验过去称显著性检验。它是利用小概率反证法思想,从问题的对立面(H0)出发间接判断要解决的问题(H1)是否成立。然后在H0成立的条件下计算检验统计量,最后获得P值来判断。
假设检验基本思想第3页,共50页,2023年,2月20日,星期日问题实质上都是希望通过样本统计量与总体参数的差别,或两个样本统计量的差别,来推断总体参数是否不同。这种识别的过程,就是本章介绍的假设检验(hypothesistest)。
第4页,共50页,2023年,2月20日,星期日例8–1
通过以往大规模调查,已知某地一般新生儿的头围均数为34.50cm,标准差为1.99cm。为研究某矿区新生儿的发育状况,现从该地某矿区随机抽取新生儿55人,测得其头围均数为33.89cm,问该矿区新生儿的头围总体均数与一般新生儿头围总体均数是否不同?
第5页,共50页,2023年,2月20日,星期日
假设检验的目的——就是判断差别是由哪种原因造成的。①
抽样误差造成的;②
本质差异造成的。第6页,共50页,2023年,2月20日,星期日一般新生儿头围34.50cm33.89cn矿区新生儿头围34.50cm一种假设H0另一种假设H1抽样误差总体不同第7页,共50页,2023年,2月20日,星期日第二节
假设检验的基本步骤第8页,共50页,2023年,2月20日,星期日例8–1通过以往大规模调查,已知某地一般新生儿的头围均数为34.50cm,标准差为1.99cm。为研究某矿区新生儿的发育状况,现从该地某矿区随机抽取新生儿55人,测得其头围均数为33.89cm,问该矿区新生儿的头围总体均数与一般新生儿头围总体均数是否不同?第9页,共50页,2023年,2月20日,星期日第10页,共50页,2023年,2月20日,星期日③
H1的内容直接反映了检验单双侧。若H1中只是
0或
<0,则此检验为单侧检验。它不仅考虑有无差异,而且还考虑差异的方向。④
单双侧检验的确定,首先根据专业知识,其次根据所要解决的问题来确定。若从专业上看一种方法结果不可能低于或高于另一种方法结果,此时应该用单侧检验。一般认为双侧检验较保守和稳妥。第11页,共50页,2023年,2月20日,星期日
(3)检验水准,过去称显著性水准,是预先规定的概率值,它确定了小概率事件的标准。在实际工作中常取=0.05。可根据不同研究目的给予不同设置。第12页,共50页,2023年,2月20日,星期日第13页,共50页,2023年,2月20日,星期日
根据变量和资料类型、设计方案、统计推断的目的、是否满足特定条件等(如数据的分布类型)选择相应的检验统计量。
2.计算检验统计量第14页,共50页,2023年,2月20日,星期日
3.确定P值,下结论如例8–1已得到P<0.05,按所取检验水准0.05,则拒绝H0,接受H1,差异有统计学意义(统计结论),可以认为矿区新生儿的头围均数与一般新生儿不同,矿区新生儿的头围小于一般新生儿(专业结论)。第15页,共50页,2023年,2月20日,星期日第16页,共50页,2023年,2月20日,星期日第17页,共50页,2023年,2月20日,星期日若,不拒绝H0,但不能下“无差别”或“相等”的结论,只能下“根据目前试验结果,尚不能认为有差别”的结论。
第18页,共50页,2023年,2月20日,星期日第三节大样本均数的假设检验
第19页,共50页,2023年,2月20日,星期日均数比较u检验的主要适用条件为:1.单样本数据,每组例数等于或大于60例;两样本数据,两组例数的合计等于或大于60例,而且基本均等。2.样本数据不要求一定服从正态分布总体。3.两总体方差已知。4.理论上要求:单样本是从总体中随机抽取,两样本为随机分组资料。观察性资料要求组间具有可比性,即比较组之间除了研究因素以外,其他可能有影响的非研究因素均应相同或相近。第20页,共50页,2023年,2月20日,星期日一、单样本均数的u检验(one-sampleu-test)适用于当n较大(如n>60)或已知时。检验统计量分别为P121例8-2第21页,共50页,2023年,2月20日,星期日
P121例8-2例8–2(续例7-5)1995年,已知某地20岁应征男青年的平均身高为168.5cm。2003年,在当地20岁应征男青年中随机抽取85人,平均身高为171.2cm,标准差为5.3cm,问2003年当地20岁应征男青年的身高与1995年相比是否不同?第22页,共50页,2023年,2月20日,星期日
P121例8-2检验界值u0.05/2=1.96,u0.01/2=2.58,u>u0.01/2,得P<0.01,按α=0.05水准,拒绝H0,接受H1,2003年当地20岁应征男青年与1995年相比,差别有统计学意义。可认为2003年当地20岁应征男青年的身高有变化,比1995年增高了。第23页,共50页,2023年,2月20日,星期日
P121例8-2由例7-5可知,2003年当地20岁应征男青年身高总体均数的95%的可信区间为170.1~172.3cm。该区间的下限已高于1995年身高的总体均数168.5cm,也说明2003年20岁应征男青年增高了。第24页,共50页,2023年,2月20日,星期日
二、两样本比较的u检验(two-sampleu-test)适用于两样本含量较大(如n1>30且n2>30)时。检验统计量为
P122例8-3两均数之差的标准误的估计值第25页,共50页,2023年,2月20日,星期日P122例8-3两均数之差的标准误的估计值第26页,共50页,2023年,2月20日,星期日由于u0.05/2=1.96,u0.01/2=2.58,|u|>u0.01/2,得P<0.01,按α=0.05水准,拒绝H0,接受H1,两组间差别有统计学意义。可以认为试验组和对照组退热天数的总体均数不相等,两组的疗效不同。试验组的平均退热天数比对照组短。例7-7已计算了的95%的可信区间:天,给出了两总体均数差别的数量大小。
P122例8-3两均数之差的标准误的估计值第27页,共50页,2023年,2月20日,星期日第四节
大样本率的假设检验第28页,共50页,2023年,2月20日,星期日率的u检验的应用条件:1、n较大,如每组例数大于60例。2、样本p或1-p均不接近100%和0。3、np和n(1-p)均大于5。第29页,共50页,2023年,2月20日,星期日一、单样本率的u检验
适用于样本率与已知的总体率的比较
P123例8-4第30页,共50页,2023年,2月20日,星期日例8–4已知某地40岁以上成年男性高血压患病率为8.5%(π0),经健康教育数年后,随机抽取该地成年男性1000名,查出高血压患者55例,患病率(p)为5.5%。问经健康教育后,该地成年男性高血压患病率是否有降低?第31页,共50页,2023年,2月20日,星期日
单侧界值u0.01=2.33,现|u|>u0.01,故P<0.01,按α=0.05水准拒绝H0,接受H1,差异有统计学意义,可认为经健康教育后,该地成年男性高血压患病率有所降低。第32页,共50页,2023年,2月20日,星期日二、两个率比较的u检验推断两个总体率是否相同
P124例8-5第33页,共50页,2023年,2月20日,星期日例8–5某医院用黄芪注射液和胎盘球蛋白进行穴位注射治疗小儿支气管哮喘病人,黄芪注射液治疗117例,有效103例;胎盘球蛋白治疗55例,有效49例。试比较两种疗法有效率有无差别
第34页,共50页,2023年,2月20日,星期日
u0.05/2=1.96,现|u|<u0.05/2,故P>0.05,按α=0.05检验水准接受H0,差异无统计学意义,尚不能认为两种疗法治疗小儿支气管哮喘的疗效有差别。第35页,共50页,2023年,2月20日,星期日第五节检验水准与两类错误
第36页,共50页,2023年,2月20日,星期日I型错误和II型错误
假设检验是利用小概率反证法思想,从问题的对立面(H0)出发间接判断要解决的问题(H1)是否成立,然后在假定H0成立的条件下计算检验统计量,最后根据P值判断结果,此推断结论具有概率性,因而无论拒绝还是不拒绝H0,都可能犯错误。详见表8-1。第37页,共50页,2023年,2月20日,星期日
I型错误:“实际无差别,但下了有差别的结论”,假阳性错误。犯这种错误的概率是(其值等于检验水准)
II型错误:“实际有差别,但下了不拒绝H0的结论”,假阴性错误。犯这种错误的概率是(其值未知)
。
但n一定时,
增大,则减少。
第38页,共50页,2023年,2月20日,星期日可能发生的两类错误第39页,共50页,2023年,2月20日,星期日图8-2I型错误与II型错误示意图(以单侧u检验为例)
第40页,共50页,2023年,2月20日,星期日
1-
:检验效能(power):当两总体确有差别,按检验水准所能发现这种差别的能力。第41页,共50页,2023年,2月20日,星期日ab减少(增加)I型错误,将会增加(减少)II型错误增大n同时降低a与ba与b间的关系第42页,共50页,2023年,2月20日,星期日减少I型错误的主要方法:假设检验时设定
值。减少II型错误的主要方法:提高检验效能。提高检验效能的最有效方法:增加样本量。如何选择合适的样本量:实验设计。第43页,共50页,2023年,2月20日,星期日第六节单侧检验与双侧检验
第44页,共50页,2023年,2月20日,星期日图8–3双侧u检验的检验水准α
图8–4单侧u检验的检验水准α
单侧检验概念第45页,共50页,2023年,2月20日,星期日
第七节
假设检验的统计意义与实际意义第46页,共50页,2023年,2月20日,星期日1.要有严密的研究设计,尤其是下因果结论。2.不同的资料应选用不同检验方法。3.正确理解“显著性”一词的含义(用统计学意义一词替代)。
第47页,共50页,2023年,2月20日,星期日4.结论不能绝对化,提倡使用精确P值。
5.注意统计“显著性”与医学/临床/生物
学“显著性”的区别
第48页,共50页,2023年,2月20日,星期日
6.可信区间与假设检验各自不同的作用,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 函数的奇偶性的说课稿
- 上市公司员工购房合同范本
- 转口贸易合同中运输条款
- 办公大楼浮雕施工合同
- 物业公司财务内控手册
- 城市公园绿化招投标报名表
- 活动摄像租赁简易合同
- 餐饮KTV音响系统设备协议
- 航运服务招投标专用合同条款
- 体育馆消防工程合同
- 高速公路改扩建中央分隔带光缆保通实施性方案
- 用电检查培训
- 弘扬伟大长征精神图文.ppt
- 西南石油大学 《油藏工程》教学提纲+复习提纲)PPT精品文档
- 六年级数学下册 圆锥的体积教案 西师大版 教案
- 企业质量管理体系程序文件(全套)
- 莫迪温产品介绍
- 天津市宝坻区土地利用总体规划(2015-2020年)
- 话剧《阮玲玉》
- 电子商务十大风云人物
- [专业英语考试复习资料]专业八级分类模拟41
评论
0/150
提交评论