版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
信息论课件第五章第1页,共28页,2023年,2月20日,星期日(1)循环码的性质循环码是线性分组码的一个重要子类;由于循环码具有优良的代数结构,使得可用简单的反馈移位寄存器实现编码和伴随式计算,并可使用多种简单而有效的译码方法;循环码是研究最深入、理论最成熟、应用最广泛的一类线性分组码。第2页,共28页,2023年,2月20日,星期日(2)循环码的定义循环码:如果(n,k)线性分组码的任意码矢C=(Cn-1,Cn-2,…,C0)的i次循环移位,所得矢量C(i)=(Cn-1-i,Cn-2-i,…,C0,Cn-1,…,Cn-i)仍是一个码矢,则称此线性码为(n,k)循环码。第3页,共28页,2023年,2月20日,星期日(3)码多项式码多项式:为了运算的方便,将码矢的各分量作为多项式的系数,把码矢表示成多项式,称为码多项式。其一般表示式为C(x)=Cn-1xn-1+Cn-2xn-2+…+C0)码多项式i次循环移位的表示方法记码多项式C(x)的一次左移循环为C(1)(x)
,i次左移循环为C(i)(x)第4页,共28页,2023年,2月20日,星期日码多项式的模(xn+1)运算0和1两个元素模2运算下构成域。第5页,共28页,2023年,2月20日,星期日码矢C循环i次所得码矢的码多项式
C(x)乘以x,再除以(xn+1),得第6页,共28页,2023年,2月20日,星期日上式表明:码矢循环一次的码多项式C(1)(x)是原码多项式C(x)乘以x除以(xn+1)的余式。写作因此,
C(x)的i次循环移位C(i)(x)是C(x)乘以xi除以(xn+1)的余式,即结论:循环码的码矢的i次循环移位等效于将码多项式乘xi后再模(xn+1)。第7页,共28页,2023年,2月20日,星期日(4)举例:(7,3)循环码可由任一个码矢,比如(0011101)经过循环移位,得到其它6个非0码矢;也可由相应的码多项式(x4+x3+x2+1),乘以xi(i=1,2,…,6),再模(x7+1)运算得到其它6个非0码多项式。移位过程和相应的多项式运算如表6.3.1所示。第8页,共28页,2023年,2月20日,星期日第9页,共28页,2023年,2月20日,星期日(1)循环码的生成矩阵根据循环码的循环特性,可由一个码字的循环移位得到其它的非0码字。在(n,k)循环码的2k个码字中,取前(k-1)位皆为0的码字g(x)(其次数r=n-k),再经(k-1)次循环移位,共得到k个码字:g(x),xg(x),…,xk-1g(x)
这k个码字显然是相互独立的,可作为码生成矩阵的k行,于是得到循环码的生成矩阵G(x)第10页,共28页,2023年,2月20日,星期日(2)循环码的生成多项式码的生成矩阵一旦确定,码就确定了;这就说明:(n,k)循环码可由它的一个(n-k)次码多项式g(x)来确定;所以说g(x)生成了(n,k)循环码,因此称g(x)为码的生成多项式。第11页,共28页,2023年,2月20日,星期日(3)生成多项式和码多项式的关系定理:在(n,k)循环码中,生成多项式g(x)是惟一的(n-k)次码多项式,且次数是最低的。定理:在(n,k)循环码中,每个码多项式C(x)都是g(x)的倍式;而每个为g(x)倍式且次数小于或等于(n-1)的多项式,必是一个码多项式。
第12页,共28页,2023年,2月20日,星期日定理6.3.3(定理6.3.2的逆定理):在一个(n,k)线性码中,如果全部码多项式都是最低次的(n-k)次码多项式的倍式,则此线性码为一个(n,k)循环码。
注:一般说来,这种循环码仍具有把(n,k)线性码码中任一非0码矢循环移位必为一码矢的循环特性,但从一个非0码矢出发,进行循环移位,就未必能得到码的所有非0码矢了。所以称这种循环码为推广循环码。第13页,共28页,2023年,2月20日,星期日码字循环关系图单纯循环码的码字循环图:(7,3)循环码第14页,共28页,2023年,2月20日,星期日推广循环码的码字循环图:(6,3)循环码第15页,共28页,2023年,2月20日,星期日(4)如何寻找一个合适的生成多项式由下面式子可知:循环码的多项式等于信息多项式乘以生成多项式。
这说明:对一个循环码只要生成多项式一旦确定,码就确定了,编码问题就解决了。
所以:作一循环码的关键,就在于寻找一个适当的生成多项式。第16页,共28页,2023年,2月20日,星期日定理:(n,k)循环码的生成多项式g(x)是(xn+1)的因式,即xn+1=h(x)g(x)。定理:若g(x)是一个(n-k)次多项式,且为(xn+1)的因式,则g(x)生成一个(n,k)循环码。结论:当求作一个(n,k)循环码时,只要分解多项式(xn+1),从中取出(n-k)次因式作生成多项式即可。第17页,共28页,2023年,2月20日,星期日举例:求(7,3)循环码的生成多项式。[解]:分解多项式xn+1,取其4次因式作生成多项式x7+1=(x+1)(x3+x2+1)(x3+x+1)可将一次和任一个三次因式的乘积作为生成多项式,因而可取g1(x)=(x+1)(x3+x2+1)=x4+x2+x+1或g2(x)=(x+1)(x3+x+1)=x4+x3+x2+1第18页,共28页,2023年,2月20日,星期日(5)循环码的监督多项式和监督矩阵循环码的监督多项式:设g(x)为(n,k)循环码的生成多项式,必为(xn+1)的因式,则有xn+1=h(x)g(x),式中h(x)为k次多项式,称为(n,k)循环码的监督多项式。(n,k)循环码也可由其监督多项式完全确定。举例:(7,3)循环码x7+1=(x3+x+1)(x4+x2+x+1)4次多项式为生成多项式g(x)=x4+x2+x+1=g4x4+g3x3+g2x2+g1x+g03次多项式是监督多项式h(x)=x3+x+1=h3x3+h2x2+h1x+h0第19页,共28页,2023年,2月20日,星期日循环码的监督矩阵由等式x7+1=h(x)g(x)两端同次项系数相等得将上面的方程组写成矩阵形式第20页,共28页,2023年,2月20日,星期日上式中,列阵的元素是生成多项式g(x)的系数,是一个码字,那么第一个矩阵则为(7,3)循环码的监督矩阵,即第21页,共28页,2023年,2月20日,星期日循环码监督矩阵的构成由式(6.3.2)可见,监督矩阵的第一行是码的监督多项式h(x)的系数的反序排列,第二、三、四行是第一行的移位;可用监督多项式的系数来构成监督矩阵第22页,共28页,2023年,2月20日,星期日(n,k)循环码的监督矩阵对偶问题如果xn+1=h(x)g(x),其中g(x)为(n-k)
次多项式,以g(x)为生成多项式,则生成一个(n,k)循环码;以h(x)为生成多项式,则生成(n,n-k)循环码;这两个循环码互为对偶码。第23页,共28页,2023年,2月20日,星期日线性码的译码是根据接收字多项式的伴随式和可纠的错误图样间的一一对应关系,由伴随式得到错误图样;循环码是线性码的一个特殊子类,循环码的译码与线性码的译码步骤基本一致。不过由于循环码的循环特性,使它的译码更加简单易行;循环码的译码过程仍包括三个步骤:接收多项式的伴随式计算;求伴随式对应的错误图样;用错误图样纠错。6.3.6循环码的译码第24页,共28页,2023年,2月20日,星期日(1)根据伴随式定义ST=HRT计算伴随式S设设第25页,共28页,2023年,2月20日,星期日这是前面介绍过的由接收矢量相应分量直接求和计算伴随式的方法,对所有线性码都适用。第26页,共28页,2023年,2月20日,星期日第27页,共28页,2023年,2月20日,星期日(4)接收字循环移位的伴随式与伴随式循环移位的关系定理6.3.7:设S(x)为接收矢量R(x)的伴随式,则R(x)的循环移位xR(x)(mod(xn+1))
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 屋里尖尖角课件
- 西京学院《影视鉴赏》2023-2024学年第一学期期末试卷
- 西京学院《数据采集与预处理》2022-2023学年期末试卷
- 孝亲敬老,从我做起
- 西京学院《机器学习》2023-2024学年期末试卷
- 2024-2025学年高二物理举一反三系列1.4质谱仪和回旋加速器((含答案))
- 爆米花课件背景
- Module 4单元备课(说课稿)-2024-2025学年外研版(一起)英语三年级上册
- 西昌学院《土地评价学》2022-2023学年第一学期期末试卷
- 天然气净化高级单选题复习试题有答案
- 城市轨道交通概论PPT完整全套教学课件
- 航空器系统与动力装置学习通课后章节答案期末考试题库2023年
- 呼吸机相关性肺炎诊断、预防和治疗指南(2023年)
- 2023年副主任医师(副高)-中医骨伤科学(副高)考试历年真题摘选带答案
- 《红星照耀中国》PPT只是分享
- 引水隧洞专项施工方案
- 初中英语-Unit5 What are the shirts made of教学设计学情分析教材分析课后反思
- 污水处理站安全培训课件
- 消毒供应中心质量管理课件
- 大型幕墙施工工程重点难点分析
- 六年级写自己典型事例300字范文(6篇)
评论
0/150
提交评论