




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档-下载后可编辑使用碳化硅进行双向车载充电机设计-设计应用电动汽车(EV)车载充电机(OBC)可以根据功率水平和功能采取多种形式,充电功率从电动机车等应用中的不到2kW,到高端电动汽车中的22kW不等。传统上,充电功率是单向的,但近年来,双向充电越来越受到关注。本文将重点关注双向OBC,并讨论碳化硅(SiC)在中功率(6.6kW)和高功率(11-22kW)OBC中的优势。为什么要转向采用双向OBC?随着汽车世界朝着用更清洁的燃料替代品取代汽油的方向发展,电动汽车运输的市场区块正在经历快速增长。随着纯电动汽车的市场份额不断增加,每辆车的电池装机容量也在增加,消费者还要求为大容量电池提供更快的充电时间。尤其是针对高性能的电动汽车,这种需求也促使电池工作电压从400V增加到800V。配备足够电池容量的电动汽车将有可能充当储能系统,实现各种车联网(vehicle-to-everything,V2X)的充电用例,像是车辆到家庭发电、车辆到电网的应用机会,或是进行车辆到车辆充电。因此,OBC正在从单向拓扑到双向拓扑转变,采用双向OBC提高系统效率是一种普遍趋势。
图1:双向OBC支持新型车联网的使用双向OBC系统模块电动汽车的OBC设计需要高功率密度和化效率,以充分利用可用的电动汽车空间并化重量。双向OBC由一个双向AC/DC转换器组成,通常是一个功率因数校正(PFC)或有源前端(AFE)电路,后面则跟着一个隔离的双向DC/DC转换器。让我们分别检查这些模块。PFC/AFE模块在输入端,传统的PFC升压转换器是使用广泛的单相拓扑,但它不支持双向操作并且效率相对较低。图腾柱PFC通过消除桥式整流器级来提高效率,将传导路径中的半导体器件数量从三个减少到两个。
图2:从升压拓扑(a)更改为图腾柱PFC(b)可提高效率并允许双向操作。图腾柱PFC包含两个以不同频率工作的半桥,高频桥臂进行升压、整流,以高频率切换。低频桥臂主要对输入电压进行整流,在50/60Hz的频率下切换。在欧洲的一些地区,三相电源可用于住宅公用事业,通常可以使用三相6开关PFC/AFE拓扑,如图3所示。
图3:双向三相6开关PFC拓扑还有其他类型的三相PFC,例如T型PFC,它是一种三电平转换器。三电平转换器的好处是开关损耗更低,电感器尺寸更小。然而,想要获得这些好处,将会增加系统复杂性、更多的器件数量、更高的总成本和转换器的总体尺寸。因此,图3所示的基本2电平三相PFC转换器,是三相双向OBC常用的拓扑。DC/DC转换器模块单向OBC中的DC/DC转换器通常是LLC谐振转换器,但这是一种单向拓扑,在反向工作模式下,转换器的电压增益受到限制,从而降低了其性能。因此,图4中的双向CLLC谐振转换器更适合DC/DC级,因为它在充电和放电模式下都结合了高效率和宽输出电压范围。
图4:双向CLLCDCDC转换器在电动汽车OBC应用中,CLLC采用软开关来提高效率,采用初级侧的零电压开通(ZVS),次级侧ZVS+ZCS开关相结合。另一种常见的双向DCDC转换器拓扑是双有源桥(DAB)。DAB的操作非常简单,通过移相调节输出。然而,它的ZVS范围有限,并且由于DAB关断电流高于CLLC,因此其开关损耗高于CLLC。因此,总的来说,DAB的效率低于CLLC。另一方面,CLLC中谐振电路的设计更为复杂。SiC的诸多优点SiC因其独特的高临界电场、高电子漂移速度、高温和高导热性组合,而成为大功率系统的。在晶体管级别上,其具备低导通电阻(RDS(on))和低开关损耗,使其成为大电流高压应用的理想选择。除了SiC,大功率设计中的有源器件还有另外两种选择,包括硅(Si)MOSFET和IGBT。对于图腾柱PFC中的高功率应用,SiMOSFET是不切实际的。SiMOSFET体二极管的反向恢复,导致连续导通模式(CCM)下高功率损耗,因此其使用仅限于非连续模式操作和低功率应用。相比之下,SiCMOSFET允许图腾柱PFC在CCM中运行,以实现高效率、低EMI和更高的功率密度。对于额定电压,SiMOSFET在650V的电压下,具有良好的RDS(on)性能。对于1200V,SiMOSFET的RDS(on)对于这种大功率应用来说太高了。与IGBT相比,SiCMOSFET也具有优势。IGBT体二极管可以使用超快速二极管代替。但IGBT的开关频率由于其高开关损耗而受到限制。与SiC解决方案相比,低开关频率增加了磁性器件和无源组件的重量和尺寸。中功率双向OBC架构(6.6kW)中功率OBC通常采用单相120V或240V输入和400VDC母线运行。拓扑是单相图腾柱PFC,后面跟着CLLCDCDC转换器,如图5所示。
图5:使用SiC和图腾柱PFC的高效OBC架构对于6.6kW,PFC中每个位置可采用两个60mΩMOSFET并联(例如WolfspeedE3M0060065K)或用一个25mΩMOSFET,DCDC中每个位置可采用一个60mΩ(E3M0060065K),或一个45mΩMOSFET(E3M0045065K)。下表总结了这种双向OBC设计的器件选择。表1:高效双向OBC架构(3.3-6.6kW)的MOSFET选择Wolfspeed团队基于图5中的架构设计了一个6.6kWOBC参考设计,以展示SiCMOSFET在此应用中的性能和实际用途。该表显示了相关的需求。
表2:6.6kW双向OBC参考设计规格可在线找到Wolfspeed的6.6kW高功率密度双向OBC参考设计的详细信息。更高功率的双向OBC设计(11kW/22kW)在11kW或22kW等更高功率水平下,电池电压可以是400V或800V,但如前所述,目前市场则正朝着800V发展。图6显示了高功率三相双向OBC的系统框图。
图6:高功率三相双向OBC系统框图该设计可兼容400V或800V电池。11kW设计可以将75mΩ1200VMOSFET(例如Wolfspeed的E3M0075120K)用于PFC和CLLC转换器的初级侧。在次级侧,800V电池应用使用与初级相同的75mΩMOSFET。40mΩ1200VMOSFET可用于高性能应用,对于400V电池应用,可以选择四个650V25mΩMOSFET作为次级侧。22kW的设计与11kWOBC的设计相似,但更高的功率输出需要更低的RDS(on)器件,可用一个32mΩ1200VMOSFET用于PFC和DCDC的初级侧。同样地,次级侧既可以将相同的初级侧器件用于800V母线应用,也可以在400V应用使用650V15mΩ来替代。
表3总结了大功率三相设计的器件选择。表3:11kW和22kW双向OBC的MOSFET选择Wolfspeed为3相双向OBC设计了两种参考设计,一种用于22kW三相PFC,一种用于22kWDCDC,下表显示了对大功率22kWOBC的要求。OBC设计实现了大于96%的整体效率,充电和放电模式的DC/DC峰值效率大于98.5%。有关三相22kWPFC和22kWDC/DC的更多详细信息,请访问Wolfspeed网站。
表4:用于双向OBC的22kW三相PFC和DCDC的高端规格22kW基于SiC的参考设计兼容单相输入和三相输入在许多欧洲家庭中,三相电源很容易获得,但典型的美国家庭、亚洲和南美家庭只有标准的单相240V。在这种情况下,设计需要大功率的22kWOBC,它可以同时兼容单相和三相以减少OBC的数量。第四条桥臂被添加到传统的三相PFC中,这样设计人员就可以对单相输入使用交错技术。图7显示了一个交错式图腾柱PFC,它具有三个高频桥臂和第四个低频桥臂,每个PFC的高频桥臂通过32mΩ1200VSiCMOSFET提供6.6kW的功率。低频桥臂可以使用两个SiIGBT来降低成本。当三相可用时,该电路可以自动重新配置为三相工作,使第四条桥臂悬空不用。
图7:用于22kW单相设计的交错式图腾柱PFC22kW双向OBC中比较SiC与Si在双向OBC中,基于SiC的解决方案在成本、尺寸、重量、功率密度和效率所有相关方面,都优于基于Si的解决方案。例如,在(为什么在下一个双向车载充电机设计中选择SiC而不是Si?)中详细的比较表明,22kW双向OBC(图6中所示)基于SiC的解决方案需要14个功率器件和14个栅极驱动器,基于Si的设计需要22个功率器件和22个栅极驱动器。在比较性能时,SiC设计实现了97%的效率和3kW/L的功率密度,而Si设计效率为95%和2kW/L的功率密度。,从系统成本中表明,基于Si的解决方案比SiC设计高出约18%。6.6kW的对比也展现了SiC设计的优越性。与Si设计相比,这些优势使SiC系统节省的净寿命约550美元。关于WolfspeedSiC器件双向功能是电动汽车OBC设计的新趋势,WolfspeedSiCMOSFET通过提供具有低导通电阻、低输出电容和低源极电感的器件,完美融合了低开关损耗和低导通损耗
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生写字个别辅导计划
- 陕西省商洛市洛南县2024年物理九上期末经典模拟试题含解析
- 新疆建设职业技术学院《表演基础及技能》2023-2024学年第一学期期末试卷
- 云南省保山市施甸县2024年九年级物理第一学期期末检测试题含解析
- 浙江农业商贸职业学院《音乐图像学》2023-2024学年第一学期期末试卷
- 新疆巴州三中学2025届数学八上期末质量跟踪监视模拟试题含解析
- 运城护理职业学院《观赏草鉴赏与应用》2023-2024学年第一学期期末试卷
- 上海市市西初级中学2024-2025学年九年级物理第一学期期末学业水平测试试题含解析
- 陕西省西安市益新中学2024-2025学年九年级物理第一学期期末检测模拟试题含解析
- 水利工程材料供应计划及保证措施
- 医疗设备采购计划申请论证表(空)
- WD-1500机组故障处理指导手册
- 招标代理服务规范
- 小学英语新课程标准解读课件
- 新生儿气胸胸腔穿刺及闭式引流演示文稿
- 易观分析:中国生鲜电商年度综合分析2022
- GB/T 36761-2018工业用乙二胺
- GB/T 26480-2011阀门的检验和试验
- GB/T 15738-2008导电和抗静电纤维增强塑料电阻率试验方法
- DB63-T 949-2020锅炉安全使用管理规范
- 控制计划CP模板
评论
0/150
提交评论