




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2011年广东省汕头市中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的倒数是()A.2 B.﹣2 C. D.﹣2.(3分)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A.5.464×107吨 B.5.464×108吨 C.5.464×109吨 D.5.464×1010吨3.(3分)将下图中的箭头缩小到原来的,得到的图形是()A. B. C. D.4.(3分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A. B. C. D.5.(3分)正八边形的每个内角为()A.120° B.135° C.140° D.144°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)已知反比例函数解析式的图象经过(1,﹣2),则k=.7.(4分)要使在实数范围内有意义,x应满足的条件是.8.(4分)按下面程序计算:输入x=3,则输出的答案是.9.(4分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=40°,则∠C=.10.(4分)如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1,取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分,取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分,如此下去…,则正六角星形A4F4B4D4C4E4的面积为.三、解答题(一)(本大题5小题,每小题6分,共30分)11.(6分)计算:(﹣1)0+sin45°﹣22.12.(6分)解不等式组,并把解集在数轴上表示出来.13.(6分)已知:如图,E、F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.14.(6分)如图,在平面直角坐标系中,点P的坐标为(﹣4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B.求劣弧与弦AB围成的图形的面积(结果保留π)15.(6分)已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+1经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.(7分)某品牌瓶装饮料每箱价格26元,某商店对该瓶装饮料进行“买一送三”促销活动,即整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元,问该品牌饮料一箱有多少瓶?17.(7分)如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:≈1.414,≈1.732)18.(7分)李老师为了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.(7分)如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.(9分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是,它是自然数的平方,第8行共有个数;(2)用含n的代数式表示:第n行的第一个数是,最后一个数是,第n行共有个数;(3)求第n行各数之和.21.(9分)如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2).(1)问:始终与△AGC相似的三角形有及;(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);(3)问:当x为何值时,△AGH是等腰三角形.22.(9分)如图,抛物线y=﹣x2+x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N.设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
2011年广东省韶关市中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选:D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将546400000用科学记数法表示为5.464×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.【解答】解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选:A.【点评】本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4.【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【解答】解:共8球在袋中,其中5个红球,故摸到红球的概率为,故选:C.【点评】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.5.【分析】根据正多边形的内角求法,得出每个内角的表示方法,即可得出答案.【解答】解:根据正八边形的内角公式得出:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°.故选:B.【点评】此题主要考查了正多边形的内角公式运用,正确的记忆正多边形的内角求法公式是解决问题的关键.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.【分析】将(1,﹣2)代入式即可得出k的值.【解答】解:∵反比例函数解析式的图象经过(1,﹣2),∴k=xy=﹣2,故答案为:﹣2.【点评】此题比较简单,考查了用待定系数法求反比例函数的解析式,是中学阶段的重点.7.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式求解.【解答】解:要使在实数范围内有意义,x应满足的条件x﹣2≥0,即x≥2.【点评】本题主要考查了二次根式的意义和性质.二次根式的概念:式子(a≥0)叫二次根式.二次根式的性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.8.【分析】根据输入程序,列出代数式,再代入x的值输入计算即可.【解答】解:根据题意得:(x3﹣x)÷2∵x=3,∴原式=(27﹣3)÷2=24÷2=12.故答案为:12.【点评】本题考查了代数式求值,解题关键是弄清题意,根据题意把x的值代入,按程序一步一步计算.9.【分析】连接OB,AB与⊙O相切于点B,得到∠OBA=90°,根据三角形内角和得到∠AOB的度数,然后用三角形外角的性质求出∠C的度数.【解答】解:如图:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∵∠A=40°,∴∠AOB=50°,∵OB=OC,∴∠C=∠OBC,∵∠AOB=∠C+∠OBC=2∠C,∴∠C=25°.故答案是:25°.【点评】本题考查的是切线的性质,根据求出的性质得到∠OBA的度数,然后在三角形中求出∠C的度数.10.【分析】先分别求出第一个正六角星形AFBDCE与第二个边长之比,再根据相似多边形面积的比等于相似比的平方,找出规律即可解答.【解答】解:∵A1、F1、B1、D1、C1、E1分别是△ABC和△DEF各边中点,∴正六角星形AFBDCE∽正六角星形A1F1B1D1C1E1,且相似比为2:1,∵正六角星形AFBDCE的面积为1,∴正六角星形A1F1B1D1C1E1的面积为,同理可得,第三个六角形的面积为:=,第四个六角形的面积为:=,故答案为:.【点评】本题考查的是相似多边形的性质及三角形中位线定理,解答此题的关键是熟知相似多边形面积的比等于相似比的平方.三、解答题(一)(本大题5小题,每小题6分,共30分)11.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式的化简,乘方四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+3×﹣4,=1+3﹣4,=0.【点评】此题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握二次根式的化简等考点的运算.12.【分析】分别求出各不等式的解集,再求出其公共解集,在数轴上表示出来即可.【解答】解:,由①得,x>﹣2,由②得,x≥3,故原不等式组的解集为:x≥3,在数轴上表示为:【点评】本题考查的是解一元一次不等式组及在数轴上表示一元一次不等式组的解集,解此类题目常常要结合数轴来判断.要注意x是否取得到,若取得到则x在该点是实心的.反之x在该点是空心的.13.【分析】根据两直线平行内错角相等即可得出∠A=∠C,再根据全等三角形的判定即可判断出△ADF≌△CBE,得出AF=CE,进而得出AE=CF.【解答】证明:∵AD∥CB,∴∠A=∠C,在△ADF和△CBE中,,∴△ADF≌△CBE(ASA),∴AF=CE,∴AF+EF=CE+EF,即AE=CF.【点评】本题考查了平行线的性质以及全等三角形的判定及性质,难度适中.14.【分析】(1)根据题意作图即可求得答案,注意圆的半径为2;(2)首先根据题意求得扇形BP1A与△BP1A的面积,再作差即可求得劣弧与弦AB围成的图形的面积.【解答】解:(1)如图:∴⊙P与⊙P1的位置关系是外切;(2)如图:∠BP1A=90°,P1A=P1B=2,∴S扇形BP1A=,=π,S△AP1B=×2×2=2,∴劣弧与弦AB围成的图形的面积为:π﹣2.【点评】此题考查了圆与圆的位置关系以及扇形面积的求解方法.题目难度不大,解题的关键是注意数形结合思想的应用.15.【分析】(1)根据题意的判别式小于0,从而得出c的取值范围即可;(2)根据c的值,判断直线所经过的象限即可.【解答】解:(1)∵抛物线与x轴没有交点.∴△=1﹣4×c=1﹣2c<0,解得c>;(2)∵c>,∴直线过一、三象限,∵b=1>0,∴直线与y轴的交点在y轴的正半轴,∴直线y=cx+1经过第一、二、三象限.【点评】本题考查了抛物线和x轴的交点问题以及一次函数的性质,是基础知识要熟练掌握.四、解答题(二)(本大题4小题,每小题7分,共28分)16.【分析】根据等量关系:不赠送时每瓶的价格﹣赠送3瓶时每瓶的平均价格=0.6,依此列出方程求解即可.【解答】解:设该品牌饮料一箱有x瓶,依题意,得,化简,得x2+3x﹣130=0,解得x1=﹣13(不合题意,舍去),x2=10,经检验:x=10符合题意,答:该品牌饮料一箱有10瓶.【点评】本题考查了分式方程的应用,解决问题的关键是读懂题意,找到所求的量的等量关系.注意“买一送三”的含义.17.【分析】根据AD=xm,得出BD=xm,进而利用解直角三角形的知识解决,注意运算的正确性.【解答】解:假设AD=xm,∵AD=xm,∠ABD=45°,∴BD=AD=xm,∵∠ACD=30°,BC=50m,∴tan30°==,∴=,∴AD=25(+1)≈68.3(m),答:小明家到公路l的距离AD的长度为68.3m.【点评】此题主要考查了解直角三角形的应用,根据已知假设出AD的长度,进而表示出tan30°=是解决问题的关键.18.【分析】(1)总体所调查对象的全体,由此确定调查的总体;(2)由于已知总人数,利用总人数减去其他四个小组的人数即可得到30﹣40分钟小组的人数,然后即可补全频数分布直方图;(3)用30分钟以上的人数除以总人数50即可得到在30分钟以上(含30分钟)的人数占全班人数的百分比.【解答】解:(1)∵总体所调查对象的全体,∴“班上50名学生上学路上花费的时间”是总体;(2)如图所示:(3)依题意得在30分钟以上(含30分钟)的人数为5人,∴(4+1)÷50=10%,∴该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是10%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【分析】(1)利用等边对等角可以得到∠FBC=∠C=30°,再利用折叠的性质可以得到∠EBF=∠CBF=30°,从而可以求得所求角的度数.(2)利用上题得到的结论可以求得线段BD,然后在直角三角形ABD中求得AB即可.【解答】解:(1)∵BF=CF=8,∴∠FBC=∠C=30°,∵折叠纸片使BC经过点D,点C落在点E处,BF是折痕,∴∠EBF=∠CBF=30°,∴∠EBC=60°,∴∠BDF=90°;(2)∵∠EBC=60°∴∠ADB=60°,∵BF=CF=8.∴BD=BF•sin60°=4∴在Rt△BAD中,AB=BD×sin60°=6.【点评】本题考查梯形,直角三角形的相关知识.解决此类题要懂得用梯形的常用辅助线,把梯形分割为矩形和直角三角形,从而由矩形和直角三角形的性质来求解.五、解答题(三)(本大题3小题,每小题9分,共27分)20.【分析】(1)数为自然数,每行数的个数为1,3,5,…的奇数列,很容易得到所求之数;(2)知第n行最后一数为n2,则第一个数为n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)通过以上两步列公式从而解得.【解答】解:(1)每行数的个数为1,3,5,…的奇数列,由题意最后一个数是该行数的平方即得64,其他也随之解得:8,15;(2)由(1)知第n行最后一数为n2,且每行个数为(2n﹣1),则第一个数为n2﹣(2n﹣1)+1=n2﹣2n+2,每行数由题意知每行数的个数为1,3,5,…的奇数列,故个数为2n﹣1;(3)第n行各数之和:×(2n﹣1)=(n2﹣n+1)(2n﹣1).【点评】本题考查了整式的混合运算,(1)看数的规律,自然数的排列,每排个数1,3,5,…从而求得;(2)最后一数是行数的平方,则第一个数即求得;(3)通过以上两步列公式从而解得.本题看规律为关键,横看,纵看.21.【分析】(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论.(2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可.(3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可.【解答】解:(1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合,∵∠H+∠HAC=45°,∠HAC+∠CAG=45°,∴∠H=∠CAG,∵∠ACG=∠B=45°,∴△AGC∽△HAB,∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA;故答案为:△HAB和△HGA.(2)∵△AGC∽△HAB,∴AC:HB=GC:AB,即9:y=x:9,∴y=,∵AB=AC=9,∠BAC=90°,∴BC===9.答:y关于x的函数关系式为y=.(3)①当CG<BC时,∠GAC=∠H<∠HAG,∴AG<GH,∵GH<AH,∴AG<CH<GH,又∵AH>AG,AH>GH,此时,△AGH不可能是等腰三角形,②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形,此时,GC=,即x=,③当CG>BC时,由(1)△AGC∽△HGA,所以,若△AGH必是等腰三角形,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国小商品行业市场规模调研及投资前景研究分析报告
- 2025年中国停车示意牌行业市场规模调研及投资前景研究分析报告
- 浙江省宁波市2022-2023学年高二下学期期末九校联考英语试卷(含答案)
- 东莞教师招聘试题及答案
- 安全常识技能考试题及答案
- 探索数字化转型的商业模式
- 2025年针织布镜袋项目市场调查研究报告
- 2025年金属手镯项目市场调查研究报告
- 2025年重型层板货架项目市场调查研究报告
- 2025年邻氯苯乙酸项目市场调查研究报告
- 木地板培训资料大全
- 康养旅游概念及市场现状分析
- 99版-干部履历表-A4打印
- 人教版六年级上册数学(新插图) 倒数的认识 教学课件
- CJJ 36-2016 城镇道路养护技术规范
- 非暴力沟通(完整版)
- 中华传统文化之文学瑰宝学习通超星课后章节答案期末考试题库2023年
- 直臂式高空作业车安全管理培训课件-
- 广东省省级政务信息化服务预算编制标准(运维服务分册)
- 之江实验室:生成式大模型安全与隐私白皮书
- 世界文明史学习通课后章节答案期末考试题库2023年
评论
0/150
提交评论