国际能源署-基于排放强度的氢定义(英)_第1页
国际能源署-基于排放强度的氢定义(英)_第2页
国际能源署-基于排放强度的氢定义(英)_第3页
国际能源署-基于排放强度的氢定义(英)_第4页
国际能源署-基于排放强度的氢定义(英)_第5页
已阅读5页,还剩161页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Towardshydrogen

definitionsbased

ontheiremissions

intensity

INTERNATIONALENERGY

AGENCY

TheIEAexaminesthe

fullspectrum

ofenergyissues

includingoil,gasand

coalsupplyand

demand,renewable

energytechnologies,

electricitymarkets,

energyefficiency,

accesstoenergy,

demandside

managementand

muchmore.Through

itswork,theIEA

advocatespoliciesthat

willenhancethe

reliability,affordability

andsustainabilityof

energyinits

31membercountries,

11associationcountries

andbeyond.

Thispublicationandany

mapincludedhereinare

withoutprejudicetothe

statusoforsovereigntyover

anyterritory,tothe

delimitationofinternational

frontiersandboundariesand

tothenameofanyterritory,

cityorarea.

IEAmember

countries:

Australia

Austria

Belgium

Canada

CzechRepublic

Denmark

Estonia

Finland

France

Germany

Greece

Hungary

Ireland

Italy

Japan

Korea

Lithuania

Luxembourg

Mexico

Netherlands

NewZealand

Norway

Poland

Portugal

SlovakRepublic

Spain

Sweden

Switzerland

RepublicofTürkiye

UnitedKingdom

UnitedStates

TheEuropean

Commissionalso

participatesinthe

workoftheIEA

IEAassociation

countries:

Argentina

Brazil

China

Egypt

India

Indonesia

Morocco

Singapore

SouthAfrica

Thailand

Ukraine

Source:IEA.

InternationalEnergyAgency

Website:

TowardshydrogendefinitionsbasedontheiremissionsintensityAbstract

IEA.CCBY4.0.

PAGE|3

Abstract

TowardshydrogendefinitionsbasedontheiremissionsintensityisanewreportbytheInternationalEnergyAgency,designedtoinformpolicymakers,hydrogenproducers,investorsandtheresearchcommunityinadvanceoftheG7Climate,EnergyandEnvironmentalMinisterialmeetinginApril2023.ThereportbuildsontheanalysisfromtheIEA’sNetZeroby2050:ARoadmapfortheGlobalEnergySectorandcontinuestheseriesofreportsthattheIEAhaspreparedfortheG7onthesectoraldetailsoftheroadmap,includingtheAchievingNetZeroElectricitySectorsinG7Members,AchievingNetZeroHeavyIndustrySectorsinG7MembersandEmissionsMeasurementandDataCollectionforaNetZeroSteelIndustryreports.

Thisreportassessesthegreenhousegasemissionsintensityofthedifferenthydrogenproductionroutesandreviewswaystousetheemissionsintensityofhydrogenproductioninthedevelopmentofregulationandcertificationschemes.Aninternationallyagreedemissionsaccountingframeworkisawaytomoveawayfromtheuseofterminologiesbasedoncoloursorothertermsthathaveprovedimpracticalforthecontractsthatunderpininvestment.Theadoptionofsuchaframeworkcanbringmuch-neededtransparency,aswellasfacilitatinginteroperabilityandlimitingmarketfragmentation,thusbecomingausefulenablerofinvestmentsforthedevelopmentofinternationalhydrogensupplychains.

TowardshydrogendefinitionsbasedontheiremissionsintensityAcknowledgements

IEA.CCBY4.0.

PAGE|4

Acknowledgements

TowardshydrogendefinitionsbasedontheiremissionsintensitywaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).TheprojectwasdesignedanddirectedbyTimurGül,HeadoftheEnergyTechnologyPolicyDivision.UweRemme,HeadoftheHydrogenandAlternativeFuelsUnit,andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.

TheprincipalIEAauthorsandcontributorswereSimonBennett,StavroulaEvangelopoulou,MathildeFajardy,CarlGreenfield,FrancescoPavanandAmaliaPizarroAlonso.Severalcolleaguesacrosstheagencycontributedanalyticalinput,includingTomásdeOliveiraBredariolandJérômeHilaire.LaurentAntoni,fromtheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE)wasalsoacontributorandauthorofthereport.

ThefollowingIEAcolleaguescontributedwithvaluablecomments:KeisukeSadamori,LauraCozzi,DanDonner,PaoloFrankl,TimGould,IlkkaHannula,ChristopheMcGlade,PeterLeviandTiffanyVass.

LizzieSayereditedthemanuscript.EssentialsupportthroughouttheprocesswasprovidedbyCarolineAbettan,RekaKoczkaandPer-AndersWidell.ThanksalsotoPoeliBojorquez,CurtisBrainard,AstridDumond,IsabelleNonain-SemelinoftheCommunicationsandDigitalOffice.

TheworkcouldnothavebeenachievedwithoutthefinancialsupportprovidedbytheMinistryofEconomy,TradeandIndustry,Japan.

Thereportbenefitedfromtheinsightsgatheredduringahigh-levelexpertworkshopon“Achievingscale-upoflow-emissionhydrogenandammoniafornetzeroinG7countries”(heldon21February2023)andaseriesofconsultationswithJochenBardandDayanaGranfordRuiz(Fraunhofer-InstitutfürEnergiewirtschaftundEnergiesystemtechnik,Germany);HeribBlanco;TimoBollerheyandMartinErdmann(Hintco);MatthiasDeutschandMauricioBelaunde(AgoraEnergiewende);JohannaFriese(GesellschaftfürInternationaleZusammenarbeit,Germany);CélineLeGoazigo(WorldBusinessCouncilForSustainableDevelopment);NoévanHulstandTimKarlsson(IPHE);HeinovonMeyer(InternationalPtXHub);DariaNochevnik(HydrogenCouncil);AndreiV.Tchouvelev(HydrogenCouncil,InternationalOrganizationforStandardization);andKirstenWestphal(GermanAssociationofEnergyandWaterIndustries).

TowardshydrogendefinitionsbasedontheiremissionsintensityAcknowledgements

IEA.CCBY4.0.

PAGE|5

Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:OlumoyeAjaoandCurtisJenken(NationalResourcesCanada);SaoodMohamedAlnoori(OfficeoftheSpecialEnvoyforClimateChange,UnitedArabEmirates);ChelseaBaldino(InternationalCouncilonCleanTransportation);RutaBaltause(DirectorateGeneralforEnergy,EuropeanCommission);JochenBard(Fraunhofer-InstitutfürEnergiewirtschaftundEnergiesystemtechnik,Germany);HeribBlanco;TrevorBrown(AmmoniaEnergyAssociation);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity,UnitedStates);HarrietCulver,KatherineDavisandLizWharmby(DepartmentforEnergySecurityandNetZero,UnitedKingdom);MatthiasDeutsch,ZaffarHussainandLeandroJanke(AgoraEnergiewende);TudorFlorea(MinistryofEnergyTransition,France);JohannaFriese(GesellschaftfürInternationaleZusammenarbeit,Germany);CélineLeGoazigo(WorldBusinessCouncilforSustainableDevelopment);YukariHinoandMasashiWatanabe(MinistryofEconomy,TradeandIndustry,Japan);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);MartinLambert(OxfordInstituteforEnergyStudies,UnitedKingdom);RebeccaMaserumuleandNoévanHulst(IPHE);JonasMoberg(GreenHydrogenOrganisation);PietroMoretto(JointReserachCentre,EuropeanCommission);JaneNakano(CenterforStrategicandInternationalStudies,UnitedStates);AlejandroNuñez(ETHZürich,Switzerland);AlloysiusJokoPurwanto(EconomicResearchInstituteforASEANandEastAsia,Indonesia);StefanoRaimondi,MarcelloCapraandRobertoCianella(MinistryofEnvironmentandEnergySecurity,Italy);SunitaSatyapal,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);PetraSchwagerandJuanPabloDavila(UnitedNationsIndustrialDevelopmentOrganization);MatthijsSoede(DirectorateGeneralforResearchandInnovation,EuropeanCommission);JanStelter(NOWGmbH);KoichiUchida(StateDepartment,UnitedStates);KirstenWestphal(GermanAssociationofEnergyandWaterIndustries);andXeniaZwanziger(FederalMinistryforEconomicAffairsandClimateAction,Germany).

Theindividualsandorganisationsthatcontributedtothisstudyarenotresponsibleforanyopinionsorjudgementsitcontains.TheviewsexpressedinthestudyarenotnecessarilyviewsoftheIEA’smembercountriesorofanyparticularfunderorcollaborator.AllerrorsandomissionsaresolelytheresponsibilityoftheIEA.

TowardshydrogendefinitionsbasedontheiremissionsintensityTableofcontents

IEA.CCBY4.0.

PAGE|6

Tableofcontents

Executivesummary 7

Introduction 11

Hydrogenanditsderivativesinanetzeroenergysystem 13

Hydrogentoday 14

Theroleofhydrogen,ammoniaandhydrogen-basedfuelsinthetransitiontonetzero 15

Tradeofhydrogen,ammoniaandhydrogen-basedfuels 20

Thecostofhydrogensupply 22

Acceleratingdeploymenttomeetambitions 28

Clearhydrogendefinitionstoaddressdeploymentbarriers 30

Internationalco-operationtofacilitatedeployment 31

Defininghydrogenaccordingtoitsemissionsintensity 33

Introduction 34

Elementsofregulationsandcertificationsystemsforhydrogen 36

Theemissionsintensityofhydrogenproductionroutes 38

EmissionsintensityandcostsofhydrogenproductioninIEAscenarios 52

Towardsaninternationalemissionsaccountingframeworktodefinehydrogen 59

Considerationsforaninternationalaccountingframework 60

Avenuesforimplementation 70

Practicalconsiderationsforeffectiveimplementation 76

ConsiderationsfortheG7 83

Annex 86

Abbreviationsandacronyms 86

Unitsofmeasure 87

TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary

IEA.CCBY4.0.

PAGE|7

Executivesummary

Aclearunderstandingoftheemissionsassociatedwithhydrogenproductioncanhelpenableinvestmentandboostscale-up

Mostlarge-scaleprojectsfortheproductionoflow-emissionhydrogenarefacingimportantbottlenecks.Only4%ofprojectsthathavebeenthusfarannouncedareunderconstructionorhavetakenafinalinvestmentdecision.Uncertaintyaboutfuturedemand,thelackofinfrastructureavailabletodeliverhydrogentoendusersandthelackofclarityinregulatoryframeworksandcertificationschemesarepreventingprojectdevelopersfromtakingfirmdecisionsoninvestment.

Transparencyontheemissionsintensityofhydrogenproductioncanbringmuch-neededclarityandfacilitateinvestment.Usingcolourstorefertodifferentproductionroutes,ortermssuchas“sustainable”,“low-carbon”or“clean”hydrogen,obscuresmanydifferentlevelsofpotentialemissions.Thisterminologyhasprovedimpracticalasabasisforcontractingdecisions,deterringpotentialinvestors.Byagreeingtousetheemissionsintensityofhydrogenproductioninthedefinitionofnationalregulationsabouthydrogen,governmentscanfacilitatemarketandregulatoryinteroperability.Thisreportaimstoassistgovernmentsindoingsobyassessingtheemissionsintensityofindividualhydrogenproductionroutes,forgovernmentstothendecidewhichlevelalignswiththeirowncircumstances.

Theproductionanduseofhydrogen,ammoniaandhydrogen-basedfuelsneedstoscaleup

TheG7isacornerstoneofeffortstoacceleratethescale-upoftheproductionanduseoflow-emissionhydrogen,ammoniaandhydrogen-basedfuels.G7members–Canada,France,Germany,Italy,Japan,theUnitedKingdom,theUnitedStatesandtheEuropeanUnion–accountforaroundone-quarteroftoday’sglobalhydrogenproductionanddemand.Atthesametime,G7membersarefrontrunnersindecarbonisinghydrogenproductionandtechnologydevelopmentfornewhydrogenapplicationsinend-usesectors.TheG7canuseitstechnologicalleadershipandeconomicpowertoenableagreaterincreaseintheproductionanduseoflow-emissionhydrogen.However,G7memberscannotundertakethischallengealone.Thedevelopmentofaninternationalhydrogenmarketwillrequiretheinvolvementofawiderangeofotherstakeholders,includingamongemergingeconomies.

TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary

IEA.CCBY4.0.

PAGE|8

Hydrogen,ammoniaandhydrogen-basedfuelshaveanimportantroletoplayinthecleanenergytransition.Globalhydrogendemandreached94milliontonnesin2021,concentratedmainlyinitsuseasafeedstockinrefiningandindustry.Meetinggovernmentclimateambitionsrequiresastep-changeindemandcreationforlow-emissionhydrogen,particularlyinnewapplicationsinsectorswhereemissionsarehardtoabate,suchasheavyindustryandlong-distancetransport.Atthesametime,hydrogenproductionneedstobedecarbonised;today,low-emissionhydrogenrepresentslessthan1%ofglobalproduction.

Thedevelopmentofinternationalsupplychainscanhelptomeettheneedsofcountriesandregionswithlargedemandandlimitedpotentialtoproducelow-emissionhydrogen.Regionalcostdifferencesandgrowingdemandinregionswithlesspotentialtoproducelow-emissionhydrogen,ammoniaandhydrogen-basedfuelscouldunderpinthedevelopmentofaninternationalhydrogenmarkettotradethesefuels,despitetheadditionalcostsarisingfromconversionandtransport.Theglobalenergycrisishasfurtherstrengthenedinterestinlow-emissionhydrogenasawaytoreducedependencyonfossilfuelsandenhanceenergysecurity,becominganewdriverforglobaltradeinhydrogen.

Hydrogendefinitionsbasedonemissionsintensitycanformthebasisforrobustregulation

Theemissionsintensityofhydrogenproductionvarieswidelydependingontheproductionroute.Today,hydrogenproductionisdominatedbyunabatedfossilfuels;emissionsneedtodecreasesignificantlytomeetclimateambitions.Thefuelandtechnologyused,therateatwhichCO2captureandstorageisapplied,andthelevelofupstreamandmidstreamemissionsallstronglyinfluencetheemissionsintensityofhydrogenproduction.Forexample,productionbasedonunabatedfossilfuelscanresultinemissionsofupto27kgCO2-eq/kgH2,dependingonthelevelofupstreamandmidstreamemissions.Conversely,producinghydrogenfrombiomasswithCO2captureandstoragecanresultinnegativeemissions,asaresultofremovingthecapturedbiogeniccarbonfromthenaturalcarboncycle.Theaverageemissionsintensityofglobalhydrogenproductionin2021wasintherangeof12-13kgCO2-eq/kgH2.IntheIEANetZeroby2050Scenario,thisaveragefleetemissionsintensityreaches6-7kgCO2-eq/kgH2by2030andfallsbelow1kgCO2-eq/kgH2by2050.

Theemissionsintensityofhydrogenproducedwithelectrolysisisdeterminedbytheemissionsfromtheelectricitythatisused.UsingthemethodologydevelopedbytheInternationalPartnershipforHydrogenandFuel

TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary

IEA.CCBY4.0.

PAGE|9

CellsintheEconomy(IPHE)

1

,renewableelectricity

2

generationhasnoassociatedemissions,resultingin0kgCO2-eq/kgH2.Inthecaseofgridelectricity,theemissionsintensityvariesgreatlybetweenpeakloadandbaseloadhours,dependingonwhichtechnologyisusedtomeetadditionaldemandfortheelectrolysers.Toreduceemissions,itisthereforeimportanttoensurethatgrid-connectedelectrolysersdonotleadtoanincreaseinfossil-basedelectricitygeneration.

Carboncaptureandstoragetechnologiescanreducedirectemissionsfromfossil-basedhydrogenproductionbutmeasurestomitigateupstreamandmidstreamemissionsareneeded.Hydrogenproductionfromunabatednaturalgasresultsinanemissionsintensityintherangeof10-14kgCO2-eq/kgH2,withupstreamandmidstreamemissionsofmethaneandCO2innaturalgasproductionbeingresponsiblefor1-5kgCO2-eq/kgH2.RetrofittingexistingassetswithcaptureofCO2fromthefeedstock-relateduseofnaturalgas(captureratearound60%)canbringtheemissionsintensitydownto5-8kgCO2-eq/kgH2.Highercapturerates(above90%)canbeachievedwithadvancedtechnologies,reducingemissionsintensityto0.8-6kgCO2-eq/kgH2,althoughnoplantsusingthesetechnologiesareinoperationyet.Athighcapturerates,theemissionsintensityofhydrogenproductionisdominatedbyupstreamandmidstreamemissions,whichaccountfor0.7-5kgCO2-eq/kgH2,underscoringtheimportanceofcuttingmethaneemissionsfromnaturalgasoperations.

Governmentsshoulddefineroadmapstodecarbonisehydrogenproduction,bothdomesticandimported,inaccordancewiththeirnationalcircumstances.Thisreportthereforedoesnotprovideagenericacceptableupperthresholdfortheemissionsintensityofhydrogenproduction.However,governmentsshouldtakeintoaccountfactorssuchasemissionsintensity,supplyvolumesandaffordabilitytoinformdecision-makingtoscaleupproductionanduseoflow--emissionhydrogen.Thehigherproductioncostoflow--emissionhydrogenandtherelativelyyoungageofexistingunabatedfossilfuel-basedhydrogenproductionassetsinthechemicalsectorarebarrierstotheuptakeoflow-emissionhydrogen.RetrofittingexistingproductionassetswithCO2captureandstoragecanbeacost-effectivenear-termoptiontopartiallydecarboniseproduction.Inregionswithabundantrenewableresources,theuseofrenewableelectricitytoproducehydrogenissettobethemostcost-effectiveoption,evenbefore2030.

1TheIPHEhasdevelopedamethodologyforcalculatingthegreenhousegasemissionsintensityofhydrogenproductionandconditioning,andisduetocompletethemethodologyforhydrogentransport.TheIPHEmethodologywillserveasthebasisforthefirstinternationalstandardonthistopicandcanserveasafirststepfortheadoptionofemissionsintensityofhydrogenproductioninregulations.

2IPHEmethodologyassignszeroemissionstosolarPV,wind,hydro-andgeothermalpower.

TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary

IEA.CCBY4.0.

PAGE|10

Referencetotheemissionsintensityofhydrogenproductioninregulationscanenableinteroperabilityandlimitmarketfragmentation

Severalcertificationsystemsorregulatoryframeworksdefiningthesustainabilityattributesofhydrogenarecurrentlybeingdeveloped,butthereisariskthatlackofalignmentmayleadtomarketfragmentation.

Existingeffortshavesomecommonalitiesinscope,systemboundaries,productionpathways,modelsforchainofcustodyandemissionsintensitylevels.Butinconsistenciesinapproachesriskbecomingabarrierforthedevelopmentofinternationalhydrogentrade.Referringtotheemissionsintensityofhydrogenproduction,basedonajointunderstandingoftheappliedmethodologyusedforregulationandcertification,canbeanimportantenablerofmarketdevelopment,facilitatingaminimumlevelofinteroperatibilityandenablingmutualrecognitionratherthanreplacingorduplicatingongoingefforts.

Regulationandcertificationthatusestheemissionsintensityofhydrogenproductionshouldalsobeabletoaccommodateadditionalsustainabilitycriteria.Governmentsandcompaniesmaywishtoconsiderotherpotentialsustainabilityrequirementswhenmakingdecisionsabouttheuseofhydrogenasacleanfuelandfeedstock.Criteriarelatedtotheoriginoftheenergysource,landorwateruse,andsocio-economicaspectssuchasworkingconditionsarealreadyincorporatedintosomeregulationsandcertificationschemes.Theuseofemissionsintensityisafirststeptoenableinteroperability,butshouldnotprecludegovernmentsandcompaniesincorporatingadditionalcriteria.Theuseof“productpassports”canhelptobringallthesecriteriatogether,aswellastostandardiseprocesses,minimisecostsandmaximisetransparency.

TowardshydrogendefinitionsbasedontheiremissionsintensityIntroduction

IEA.CCBY4.0.

PAGE|11

Introduction

TowardshydrogendefinitionsbasedontheiremissionsintensityisanewreportbytheInternationalEnergyAgency,designedtoinformpolicymakers,hydrogenproducers,investorsandtheresearchcommunityinadvanceoftheG7ClimateandEnergyMinisterialinApril2023.ThereportbuildsontheanalysisfromtheIEA’s

NetZeroby2050:ARoadmapfortheGlobalEnergySector

andcontinuestheseriesofreportsthattheIEAhaspreparedfortheG7onthesectoraldetailsoftheroadmap,including

AchievingNetZeroElectricitySectorsinG7Members

,

AchievingNetZeroHeavyIndustrySectorsinG7Members

and

Emissions

MeasurementandDataCollectionforaNetZeroSteelIndustry

.

Achievingnetzeroemissionsby2050requireslarge-scaledeploymentofcleanenergytechnologiesatanunprecedentedspeed.Low-emissionhydrogen,ammoniaandhydrogen-basedfuelshaveanimportantroletoplayinthedecarbonisationofsectorswithhard-to-abateemissions,suchasheavyindustryandlong-distancetransport.However,theavailabilityoftheselow-emissionfuelsistodaylimited,andeffortsareneededintheshorttermtoscaleuptheirproductionanduse.Thiswouldhelptobringproductioncostsdownandtodevelopinternationalsupplychainsthatcansupportthedecarbonisationroadmapofregionswithlimitedpotentialtoproducethesefuelsdomesticallytomeettheirgrowingdemand.

Momentumaroundhydrogen,ammoniaandhydrogen-basedfuelshasbeengrowingoverthepastyears.Theyarenowwidelyrecognisedasanimportanttooltosupportgovernmentclimateambitionsandnetzerogreenhousegasemissionscommitmentsannouncedinrecentyears.TheglobalenergycrisissparkedbyRussianFederation(hereafter,“Russia”)’sinvasionofUkrainehasfurtherstrengthenedinterestinlow-emissionhydrogeninparticular,asawaytoreducedependencyonfossilfuelsandenhanceenergysecurity.

Industryhasrespondedtothiscallforaction,andannouncementsofnewprojectstoproducelow-emissionhydrogen,ammoniaandhydrogen-basedfuelsaregrowingataveryimpressivespeed.However,onlyasmallfractionoftheseprojectshavesecuredtheinvestmentrequiredtobeginconstruction.Thelackofclarityinregulatoryframeworksanduncertaintyaroundcertificationareimportantfactorscontributingtotheslowprogressinreal-worldimplementation.

Theuseofterminologiesthatarebasedoncolourstodescribedifferentproductiontechnologies(e.g.“grey”hydrogenforproductionbasedonunabatedfossilfuels,“blue”hydrogenforproductionbasedonfossilfuelswithcarboncaptureandstorage,or“green”hydrogenproducedthroughuseofrenewableelectricityin

IEA.CCBY4.0.

PAGE|12

electrolysers),orontermssuchas“sustainable”,“low-carbon”or“clean”hydrogenasameanstodistinguishitfromunabatedfossilfuel-basedproductionhasprovedimpracticalforuseincontractsthatunderpininvestment.Thereiscurrentlynointernationalagreementontheuseoftheseterms,whichgeneratesuncertaintyamongthedifferentplayersinvolvedinthenascenthydrogen,ammoniaandhydrogen-basedfuelsmarkets.

Theuncertaintycreatedbythelackofregulatoryclarityishinderingtheinvestmentrequiredtoscaleupproductionanddevelopsupplychains.Clarityonregulationsandcertificationprocessesneededtodemonstrateregulatorycompliancecanreassuredifferentmarketplayers,especiallyfirstmovers.Defininghydrogenbasedonthegreenhousegas(GHG)emissionsintensityofitsproductioncanhelptoprovideclaritytoprojectdevelopersandinvestorsontheemissionsintensityoftheirproductanditscompliancewithregulatoryandmarketrequirements.Inaddition,itcanenableacertainlevelofinteroperabilityofregulationsacrossdifferentcountriesandallowmutualrecognitionofcertificationschemes,whichcanminimisemarketfragmentation.

Thisreportreviewswaysforputtingemissionsintensityatthecentreofregulationandcertification.ItappliesthemethodologydevelopedbytheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE)toassesstheGHGemissionsofhydrogenproductioninordertoillustratetherangeofemissionsassociatedwithdifferenthydrogenproductionroutes.Thereportsetsoutaroutetoimplementanemissionsaccountingframeworkthatcanhelpgovernmentstofacilitateinteroperabilityandminimisemarketfragmentationinordertounlockinvestmentandspeedupdeployment.

TheG7bringstogethersomeoftheworld’slargestadvancedeconomies,collectivelyaccountingforabout40%ofglobalGDPandroughlyone-quarterofglobalhydrogenproductionanddemand.Moreover,G7membersareamongtheleadingcountriesintheimplementationofpoliciestosupportthescale-upofproductionoflow-emissionhydrogen,ammoniaand

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论