




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Towardshydrogen
definitionsbased
ontheiremissions
intensity
INTERNATIONALENERGY
AGENCY
TheIEAexaminesthe
fullspectrum
ofenergyissues
includingoil,gasand
coalsupplyand
demand,renewable
energytechnologies,
electricitymarkets,
energyefficiency,
accesstoenergy,
demandside
managementand
muchmore.Through
itswork,theIEA
advocatespoliciesthat
willenhancethe
reliability,affordability
andsustainabilityof
energyinits
31membercountries,
11associationcountries
andbeyond.
Thispublicationandany
mapincludedhereinare
withoutprejudicetothe
statusoforsovereigntyover
anyterritory,tothe
delimitationofinternational
frontiersandboundariesand
tothenameofanyterritory,
cityorarea.
IEAmember
countries:
Australia
Austria
Belgium
Canada
CzechRepublic
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Ireland
Italy
Japan
Korea
Lithuania
Luxembourg
Mexico
Netherlands
NewZealand
Norway
Poland
Portugal
SlovakRepublic
Spain
Sweden
Switzerland
RepublicofTürkiye
UnitedKingdom
UnitedStates
TheEuropean
Commissionalso
participatesinthe
workoftheIEA
IEAassociation
countries:
Argentina
Brazil
China
Egypt
India
Indonesia
Morocco
Singapore
SouthAfrica
Thailand
Ukraine
Source:IEA.
InternationalEnergyAgency
Website:
TowardshydrogendefinitionsbasedontheiremissionsintensityAbstract
IEA.CCBY4.0.
PAGE|3
Abstract
TowardshydrogendefinitionsbasedontheiremissionsintensityisanewreportbytheInternationalEnergyAgency,designedtoinformpolicymakers,hydrogenproducers,investorsandtheresearchcommunityinadvanceoftheG7Climate,EnergyandEnvironmentalMinisterialmeetinginApril2023.ThereportbuildsontheanalysisfromtheIEA’sNetZeroby2050:ARoadmapfortheGlobalEnergySectorandcontinuestheseriesofreportsthattheIEAhaspreparedfortheG7onthesectoraldetailsoftheroadmap,includingtheAchievingNetZeroElectricitySectorsinG7Members,AchievingNetZeroHeavyIndustrySectorsinG7MembersandEmissionsMeasurementandDataCollectionforaNetZeroSteelIndustryreports.
Thisreportassessesthegreenhousegasemissionsintensityofthedifferenthydrogenproductionroutesandreviewswaystousetheemissionsintensityofhydrogenproductioninthedevelopmentofregulationandcertificationschemes.Aninternationallyagreedemissionsaccountingframeworkisawaytomoveawayfromtheuseofterminologiesbasedoncoloursorothertermsthathaveprovedimpracticalforthecontractsthatunderpininvestment.Theadoptionofsuchaframeworkcanbringmuch-neededtransparency,aswellasfacilitatinginteroperabilityandlimitingmarketfragmentation,thusbecomingausefulenablerofinvestmentsforthedevelopmentofinternationalhydrogensupplychains.
TowardshydrogendefinitionsbasedontheiremissionsintensityAcknowledgements
IEA.CCBY4.0.
PAGE|4
Acknowledgements
TowardshydrogendefinitionsbasedontheiremissionsintensitywaspreparedbytheEnergyTechnologyPolicy(ETP)DivisionoftheDirectorateofSustainability,TechnologyandOutlooks(STO)oftheInternationalEnergyAgency(IEA).TheprojectwasdesignedanddirectedbyTimurGül,HeadoftheEnergyTechnologyPolicyDivision.UweRemme,HeadoftheHydrogenandAlternativeFuelsUnit,andJoseMiguelBermudezMenendezco-ordinatedtheanalysisandproductionofthereport.
TheprincipalIEAauthorsandcontributorswereSimonBennett,StavroulaEvangelopoulou,MathildeFajardy,CarlGreenfield,FrancescoPavanandAmaliaPizarroAlonso.Severalcolleaguesacrosstheagencycontributedanalyticalinput,includingTomásdeOliveiraBredariolandJérômeHilaire.LaurentAntoni,fromtheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE)wasalsoacontributorandauthorofthereport.
ThefollowingIEAcolleaguescontributedwithvaluablecomments:KeisukeSadamori,LauraCozzi,DanDonner,PaoloFrankl,TimGould,IlkkaHannula,ChristopheMcGlade,PeterLeviandTiffanyVass.
LizzieSayereditedthemanuscript.EssentialsupportthroughouttheprocesswasprovidedbyCarolineAbettan,RekaKoczkaandPer-AndersWidell.ThanksalsotoPoeliBojorquez,CurtisBrainard,AstridDumond,IsabelleNonain-SemelinoftheCommunicationsandDigitalOffice.
TheworkcouldnothavebeenachievedwithoutthefinancialsupportprovidedbytheMinistryofEconomy,TradeandIndustry,Japan.
Thereportbenefitedfromtheinsightsgatheredduringahigh-levelexpertworkshopon“Achievingscale-upoflow-emissionhydrogenandammoniafornetzeroinG7countries”(heldon21February2023)andaseriesofconsultationswithJochenBardandDayanaGranfordRuiz(Fraunhofer-InstitutfürEnergiewirtschaftundEnergiesystemtechnik,Germany);HeribBlanco;TimoBollerheyandMartinErdmann(Hintco);MatthiasDeutschandMauricioBelaunde(AgoraEnergiewende);JohannaFriese(GesellschaftfürInternationaleZusammenarbeit,Germany);CélineLeGoazigo(WorldBusinessCouncilForSustainableDevelopment);NoévanHulstandTimKarlsson(IPHE);HeinovonMeyer(InternationalPtXHub);DariaNochevnik(HydrogenCouncil);AndreiV.Tchouvelev(HydrogenCouncil,InternationalOrganizationforStandardization);andKirstenWestphal(GermanAssociationofEnergyandWaterIndustries).
TowardshydrogendefinitionsbasedontheiremissionsintensityAcknowledgements
IEA.CCBY4.0.
PAGE|5
Peerreviewersprovidedessentialfeedbacktoimprovethequalityofthereport.Theyinclude:OlumoyeAjaoandCurtisJenken(NationalResourcesCanada);SaoodMohamedAlnoori(OfficeoftheSpecialEnvoyforClimateChange,UnitedArabEmirates);ChelseaBaldino(InternationalCouncilonCleanTransportation);RutaBaltause(DirectorateGeneralforEnergy,EuropeanCommission);JochenBard(Fraunhofer-InstitutfürEnergiewirtschaftundEnergiesystemtechnik,Germany);HeribBlanco;TrevorBrown(AmmoniaEnergyAssociation);Anne-SophieCorbeau(CenteronGlobalEnergyPolicy,ColumbiaUniversity,UnitedStates);HarrietCulver,KatherineDavisandLizWharmby(DepartmentforEnergySecurityandNetZero,UnitedKingdom);MatthiasDeutsch,ZaffarHussainandLeandroJanke(AgoraEnergiewende);TudorFlorea(MinistryofEnergyTransition,France);JohannaFriese(GesellschaftfürInternationaleZusammenarbeit,Germany);CélineLeGoazigo(WorldBusinessCouncilforSustainableDevelopment);YukariHinoandMasashiWatanabe(MinistryofEconomy,TradeandIndustry,Japan);YoshikazuKobayashi(TheInstituteofEnergyEconomics,Japan);MartinLambert(OxfordInstituteforEnergyStudies,UnitedKingdom);RebeccaMaserumuleandNoévanHulst(IPHE);JonasMoberg(GreenHydrogenOrganisation);PietroMoretto(JointReserachCentre,EuropeanCommission);JaneNakano(CenterforStrategicandInternationalStudies,UnitedStates);AlejandroNuñez(ETHZürich,Switzerland);AlloysiusJokoPurwanto(EconomicResearchInstituteforASEANandEastAsia,Indonesia);StefanoRaimondi,MarcelloCapraandRobertoCianella(MinistryofEnvironmentandEnergySecurity,Italy);SunitaSatyapal,MarcMelainaandNehaRustagi(DepartmentofEnergy,UnitedStates);PetraSchwagerandJuanPabloDavila(UnitedNationsIndustrialDevelopmentOrganization);MatthijsSoede(DirectorateGeneralforResearchandInnovation,EuropeanCommission);JanStelter(NOWGmbH);KoichiUchida(StateDepartment,UnitedStates);KirstenWestphal(GermanAssociationofEnergyandWaterIndustries);andXeniaZwanziger(FederalMinistryforEconomicAffairsandClimateAction,Germany).
Theindividualsandorganisationsthatcontributedtothisstudyarenotresponsibleforanyopinionsorjudgementsitcontains.TheviewsexpressedinthestudyarenotnecessarilyviewsoftheIEA’smembercountriesorofanyparticularfunderorcollaborator.AllerrorsandomissionsaresolelytheresponsibilityoftheIEA.
TowardshydrogendefinitionsbasedontheiremissionsintensityTableofcontents
IEA.CCBY4.0.
PAGE|6
Tableofcontents
Executivesummary 7
Introduction 11
Hydrogenanditsderivativesinanetzeroenergysystem 13
Hydrogentoday 14
Theroleofhydrogen,ammoniaandhydrogen-basedfuelsinthetransitiontonetzero 15
Tradeofhydrogen,ammoniaandhydrogen-basedfuels 20
Thecostofhydrogensupply 22
Acceleratingdeploymenttomeetambitions 28
Clearhydrogendefinitionstoaddressdeploymentbarriers 30
Internationalco-operationtofacilitatedeployment 31
Defininghydrogenaccordingtoitsemissionsintensity 33
Introduction 34
Elementsofregulationsandcertificationsystemsforhydrogen 36
Theemissionsintensityofhydrogenproductionroutes 38
EmissionsintensityandcostsofhydrogenproductioninIEAscenarios 52
Towardsaninternationalemissionsaccountingframeworktodefinehydrogen 59
Considerationsforaninternationalaccountingframework 60
Avenuesforimplementation 70
Practicalconsiderationsforeffectiveimplementation 76
ConsiderationsfortheG7 83
Annex 86
Abbreviationsandacronyms 86
Unitsofmeasure 87
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|7
Executivesummary
Aclearunderstandingoftheemissionsassociatedwithhydrogenproductioncanhelpenableinvestmentandboostscale-up
Mostlarge-scaleprojectsfortheproductionoflow-emissionhydrogenarefacingimportantbottlenecks.Only4%ofprojectsthathavebeenthusfarannouncedareunderconstructionorhavetakenafinalinvestmentdecision.Uncertaintyaboutfuturedemand,thelackofinfrastructureavailabletodeliverhydrogentoendusersandthelackofclarityinregulatoryframeworksandcertificationschemesarepreventingprojectdevelopersfromtakingfirmdecisionsoninvestment.
Transparencyontheemissionsintensityofhydrogenproductioncanbringmuch-neededclarityandfacilitateinvestment.Usingcolourstorefertodifferentproductionroutes,ortermssuchas“sustainable”,“low-carbon”or“clean”hydrogen,obscuresmanydifferentlevelsofpotentialemissions.Thisterminologyhasprovedimpracticalasabasisforcontractingdecisions,deterringpotentialinvestors.Byagreeingtousetheemissionsintensityofhydrogenproductioninthedefinitionofnationalregulationsabouthydrogen,governmentscanfacilitatemarketandregulatoryinteroperability.Thisreportaimstoassistgovernmentsindoingsobyassessingtheemissionsintensityofindividualhydrogenproductionroutes,forgovernmentstothendecidewhichlevelalignswiththeirowncircumstances.
Theproductionanduseofhydrogen,ammoniaandhydrogen-basedfuelsneedstoscaleup
TheG7isacornerstoneofeffortstoacceleratethescale-upoftheproductionanduseoflow-emissionhydrogen,ammoniaandhydrogen-basedfuels.G7members–Canada,France,Germany,Italy,Japan,theUnitedKingdom,theUnitedStatesandtheEuropeanUnion–accountforaroundone-quarteroftoday’sglobalhydrogenproductionanddemand.Atthesametime,G7membersarefrontrunnersindecarbonisinghydrogenproductionandtechnologydevelopmentfornewhydrogenapplicationsinend-usesectors.TheG7canuseitstechnologicalleadershipandeconomicpowertoenableagreaterincreaseintheproductionanduseoflow-emissionhydrogen.However,G7memberscannotundertakethischallengealone.Thedevelopmentofaninternationalhydrogenmarketwillrequiretheinvolvementofawiderangeofotherstakeholders,includingamongemergingeconomies.
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|8
Hydrogen,ammoniaandhydrogen-basedfuelshaveanimportantroletoplayinthecleanenergytransition.Globalhydrogendemandreached94milliontonnesin2021,concentratedmainlyinitsuseasafeedstockinrefiningandindustry.Meetinggovernmentclimateambitionsrequiresastep-changeindemandcreationforlow-emissionhydrogen,particularlyinnewapplicationsinsectorswhereemissionsarehardtoabate,suchasheavyindustryandlong-distancetransport.Atthesametime,hydrogenproductionneedstobedecarbonised;today,low-emissionhydrogenrepresentslessthan1%ofglobalproduction.
Thedevelopmentofinternationalsupplychainscanhelptomeettheneedsofcountriesandregionswithlargedemandandlimitedpotentialtoproducelow-emissionhydrogen.Regionalcostdifferencesandgrowingdemandinregionswithlesspotentialtoproducelow-emissionhydrogen,ammoniaandhydrogen-basedfuelscouldunderpinthedevelopmentofaninternationalhydrogenmarkettotradethesefuels,despitetheadditionalcostsarisingfromconversionandtransport.Theglobalenergycrisishasfurtherstrengthenedinterestinlow-emissionhydrogenasawaytoreducedependencyonfossilfuelsandenhanceenergysecurity,becominganewdriverforglobaltradeinhydrogen.
Hydrogendefinitionsbasedonemissionsintensitycanformthebasisforrobustregulation
Theemissionsintensityofhydrogenproductionvarieswidelydependingontheproductionroute.Today,hydrogenproductionisdominatedbyunabatedfossilfuels;emissionsneedtodecreasesignificantlytomeetclimateambitions.Thefuelandtechnologyused,therateatwhichCO2captureandstorageisapplied,andthelevelofupstreamandmidstreamemissionsallstronglyinfluencetheemissionsintensityofhydrogenproduction.Forexample,productionbasedonunabatedfossilfuelscanresultinemissionsofupto27kgCO2-eq/kgH2,dependingonthelevelofupstreamandmidstreamemissions.Conversely,producinghydrogenfrombiomasswithCO2captureandstoragecanresultinnegativeemissions,asaresultofremovingthecapturedbiogeniccarbonfromthenaturalcarboncycle.Theaverageemissionsintensityofglobalhydrogenproductionin2021wasintherangeof12-13kgCO2-eq/kgH2.IntheIEANetZeroby2050Scenario,thisaveragefleetemissionsintensityreaches6-7kgCO2-eq/kgH2by2030andfallsbelow1kgCO2-eq/kgH2by2050.
Theemissionsintensityofhydrogenproducedwithelectrolysisisdeterminedbytheemissionsfromtheelectricitythatisused.UsingthemethodologydevelopedbytheInternationalPartnershipforHydrogenandFuel
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|9
CellsintheEconomy(IPHE)
1
,renewableelectricity
2
generationhasnoassociatedemissions,resultingin0kgCO2-eq/kgH2.Inthecaseofgridelectricity,theemissionsintensityvariesgreatlybetweenpeakloadandbaseloadhours,dependingonwhichtechnologyisusedtomeetadditionaldemandfortheelectrolysers.Toreduceemissions,itisthereforeimportanttoensurethatgrid-connectedelectrolysersdonotleadtoanincreaseinfossil-basedelectricitygeneration.
Carboncaptureandstoragetechnologiescanreducedirectemissionsfromfossil-basedhydrogenproductionbutmeasurestomitigateupstreamandmidstreamemissionsareneeded.Hydrogenproductionfromunabatednaturalgasresultsinanemissionsintensityintherangeof10-14kgCO2-eq/kgH2,withupstreamandmidstreamemissionsofmethaneandCO2innaturalgasproductionbeingresponsiblefor1-5kgCO2-eq/kgH2.RetrofittingexistingassetswithcaptureofCO2fromthefeedstock-relateduseofnaturalgas(captureratearound60%)canbringtheemissionsintensitydownto5-8kgCO2-eq/kgH2.Highercapturerates(above90%)canbeachievedwithadvancedtechnologies,reducingemissionsintensityto0.8-6kgCO2-eq/kgH2,althoughnoplantsusingthesetechnologiesareinoperationyet.Athighcapturerates,theemissionsintensityofhydrogenproductionisdominatedbyupstreamandmidstreamemissions,whichaccountfor0.7-5kgCO2-eq/kgH2,underscoringtheimportanceofcuttingmethaneemissionsfromnaturalgasoperations.
Governmentsshoulddefineroadmapstodecarbonisehydrogenproduction,bothdomesticandimported,inaccordancewiththeirnationalcircumstances.Thisreportthereforedoesnotprovideagenericacceptableupperthresholdfortheemissionsintensityofhydrogenproduction.However,governmentsshouldtakeintoaccountfactorssuchasemissionsintensity,supplyvolumesandaffordabilitytoinformdecision-makingtoscaleupproductionanduseoflow--emissionhydrogen.Thehigherproductioncostoflow--emissionhydrogenandtherelativelyyoungageofexistingunabatedfossilfuel-basedhydrogenproductionassetsinthechemicalsectorarebarrierstotheuptakeoflow-emissionhydrogen.RetrofittingexistingproductionassetswithCO2captureandstoragecanbeacost-effectivenear-termoptiontopartiallydecarboniseproduction.Inregionswithabundantrenewableresources,theuseofrenewableelectricitytoproducehydrogenissettobethemostcost-effectiveoption,evenbefore2030.
1TheIPHEhasdevelopedamethodologyforcalculatingthegreenhousegasemissionsintensityofhydrogenproductionandconditioning,andisduetocompletethemethodologyforhydrogentransport.TheIPHEmethodologywillserveasthebasisforthefirstinternationalstandardonthistopicandcanserveasafirststepfortheadoptionofemissionsintensityofhydrogenproductioninregulations.
2IPHEmethodologyassignszeroemissionstosolarPV,wind,hydro-andgeothermalpower.
TowardshydrogendefinitionsbasedontheiremissionsintensityExecutivesummary
IEA.CCBY4.0.
PAGE|10
Referencetotheemissionsintensityofhydrogenproductioninregulationscanenableinteroperabilityandlimitmarketfragmentation
Severalcertificationsystemsorregulatoryframeworksdefiningthesustainabilityattributesofhydrogenarecurrentlybeingdeveloped,butthereisariskthatlackofalignmentmayleadtomarketfragmentation.
Existingeffortshavesomecommonalitiesinscope,systemboundaries,productionpathways,modelsforchainofcustodyandemissionsintensitylevels.Butinconsistenciesinapproachesriskbecomingabarrierforthedevelopmentofinternationalhydrogentrade.Referringtotheemissionsintensityofhydrogenproduction,basedonajointunderstandingoftheappliedmethodologyusedforregulationandcertification,canbeanimportantenablerofmarketdevelopment,facilitatingaminimumlevelofinteroperatibilityandenablingmutualrecognitionratherthanreplacingorduplicatingongoingefforts.
Regulationandcertificationthatusestheemissionsintensityofhydrogenproductionshouldalsobeabletoaccommodateadditionalsustainabilitycriteria.Governmentsandcompaniesmaywishtoconsiderotherpotentialsustainabilityrequirementswhenmakingdecisionsabouttheuseofhydrogenasacleanfuelandfeedstock.Criteriarelatedtotheoriginoftheenergysource,landorwateruse,andsocio-economicaspectssuchasworkingconditionsarealreadyincorporatedintosomeregulationsandcertificationschemes.Theuseofemissionsintensityisafirststeptoenableinteroperability,butshouldnotprecludegovernmentsandcompaniesincorporatingadditionalcriteria.Theuseof“productpassports”canhelptobringallthesecriteriatogether,aswellastostandardiseprocesses,minimisecostsandmaximisetransparency.
TowardshydrogendefinitionsbasedontheiremissionsintensityIntroduction
IEA.CCBY4.0.
PAGE|11
Introduction
TowardshydrogendefinitionsbasedontheiremissionsintensityisanewreportbytheInternationalEnergyAgency,designedtoinformpolicymakers,hydrogenproducers,investorsandtheresearchcommunityinadvanceoftheG7ClimateandEnergyMinisterialinApril2023.ThereportbuildsontheanalysisfromtheIEA’s
NetZeroby2050:ARoadmapfortheGlobalEnergySector
andcontinuestheseriesofreportsthattheIEAhaspreparedfortheG7onthesectoraldetailsoftheroadmap,including
AchievingNetZeroElectricitySectorsinG7Members
,
AchievingNetZeroHeavyIndustrySectorsinG7Members
and
Emissions
MeasurementandDataCollectionforaNetZeroSteelIndustry
.
Achievingnetzeroemissionsby2050requireslarge-scaledeploymentofcleanenergytechnologiesatanunprecedentedspeed.Low-emissionhydrogen,ammoniaandhydrogen-basedfuelshaveanimportantroletoplayinthedecarbonisationofsectorswithhard-to-abateemissions,suchasheavyindustryandlong-distancetransport.However,theavailabilityoftheselow-emissionfuelsistodaylimited,andeffortsareneededintheshorttermtoscaleuptheirproductionanduse.Thiswouldhelptobringproductioncostsdownandtodevelopinternationalsupplychainsthatcansupportthedecarbonisationroadmapofregionswithlimitedpotentialtoproducethesefuelsdomesticallytomeettheirgrowingdemand.
Momentumaroundhydrogen,ammoniaandhydrogen-basedfuelshasbeengrowingoverthepastyears.Theyarenowwidelyrecognisedasanimportanttooltosupportgovernmentclimateambitionsandnetzerogreenhousegasemissionscommitmentsannouncedinrecentyears.TheglobalenergycrisissparkedbyRussianFederation(hereafter,“Russia”)’sinvasionofUkrainehasfurtherstrengthenedinterestinlow-emissionhydrogeninparticular,asawaytoreducedependencyonfossilfuelsandenhanceenergysecurity.
Industryhasrespondedtothiscallforaction,andannouncementsofnewprojectstoproducelow-emissionhydrogen,ammoniaandhydrogen-basedfuelsaregrowingataveryimpressivespeed.However,onlyasmallfractionoftheseprojectshavesecuredtheinvestmentrequiredtobeginconstruction.Thelackofclarityinregulatoryframeworksanduncertaintyaroundcertificationareimportantfactorscontributingtotheslowprogressinreal-worldimplementation.
Theuseofterminologiesthatarebasedoncolourstodescribedifferentproductiontechnologies(e.g.“grey”hydrogenforproductionbasedonunabatedfossilfuels,“blue”hydrogenforproductionbasedonfossilfuelswithcarboncaptureandstorage,or“green”hydrogenproducedthroughuseofrenewableelectricityin
IEA.CCBY4.0.
PAGE|12
electrolysers),orontermssuchas“sustainable”,“low-carbon”or“clean”hydrogenasameanstodistinguishitfromunabatedfossilfuel-basedproductionhasprovedimpracticalforuseincontractsthatunderpininvestment.Thereiscurrentlynointernationalagreementontheuseoftheseterms,whichgeneratesuncertaintyamongthedifferentplayersinvolvedinthenascenthydrogen,ammoniaandhydrogen-basedfuelsmarkets.
Theuncertaintycreatedbythelackofregulatoryclarityishinderingtheinvestmentrequiredtoscaleupproductionanddevelopsupplychains.Clarityonregulationsandcertificationprocessesneededtodemonstrateregulatorycompliancecanreassuredifferentmarketplayers,especiallyfirstmovers.Defininghydrogenbasedonthegreenhousegas(GHG)emissionsintensityofitsproductioncanhelptoprovideclaritytoprojectdevelopersandinvestorsontheemissionsintensityoftheirproductanditscompliancewithregulatoryandmarketrequirements.Inaddition,itcanenableacertainlevelofinteroperabilityofregulationsacrossdifferentcountriesandallowmutualrecognitionofcertificationschemes,whichcanminimisemarketfragmentation.
Thisreportreviewswaysforputtingemissionsintensityatthecentreofregulationandcertification.ItappliesthemethodologydevelopedbytheInternationalPartnershipforHydrogenandFuelCellsintheEconomy(IPHE)toassesstheGHGemissionsofhydrogenproductioninordertoillustratetherangeofemissionsassociatedwithdifferenthydrogenproductionroutes.Thereportsetsoutaroutetoimplementanemissionsaccountingframeworkthatcanhelpgovernmentstofacilitateinteroperabilityandminimisemarketfragmentationinordertounlockinvestmentandspeedupdeployment.
TheG7bringstogethersomeoftheworld’slargestadvancedeconomies,collectivelyaccountingforabout40%ofglobalGDPandroughlyone-quarterofglobalhydrogenproductionanddemand.Moreover,G7membersareamongtheleadingcountriesintheimplementationofpoliciestosupportthescale-upofproductionoflow-emissionhydrogen,ammoniaand
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源外包常见合同范本大全
- 文化产业参股合作开发合同
- 餐饮业门面租赁合同范本(含不可抗力条款)
- 纺织车间租赁合同书
- 餐饮店员工培训合作协议范本
- 离异后按揭贷款房产分割及偿还责任协议
- 诚信通会员企业信用担保服务协议
- 股权收购财产保全担保合同
- 职业健康基础知识要点
- 水上乐园清洁服务与安全管理协议
- 广西河池市2023-2024学年高二下学期7月期末考试 英语 含解析
- 《中医推拿按摩教程》课件
- 数字化赋能城乡融合发展
- 心脏骤停病人的抢救与护理
- 小红书种草营销师(初级)认证考试真题试题库(含答案)
- 汽车行业智能汽车维修与保养方案
- 安全防汛培训课件
- 医药运输配送员培训
- 战略合作框架协议
- 药品经营使用和质量监督管理办法2024年宣贯培训课件
- DB11T 1445-2017 民用建筑工程室内环境污染控制规程
评论
0/150
提交评论