




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
运动控制核心部件产业发展行动意见
重点解决高端装备产品质量较差、档次不高,缺乏核心工艺,智能化程度不足,可靠性及精度保持性难题,研制一批代表性智能加工装备、先进工艺装备和重大智能成套装备,支撑我国高端装备向高精尖和智能化互联方向发展,引领装备的智能化升级。运动控制系统产业链情况运动控制系统产业链上游包括各类电子元器件,如IC芯片、PCB板、晶体管、电阻电容等。产业链的中游主要为运动控制器、驱动器、电机、减速器和传感器等核心部件的提供商或者运动控制系统解决方案提供商。产业链的下游是各类智能制造装备行业。十三五以来,通过试点示范应用、系统解决方案供应商培育、标准体系建设等多措并举,我国制造业数字化网络化智能化转型升级加速,供给能力不断提升。在新兴制造及传统制造领域均涌现出大批领先的高端装备制造企业,并发展出离散型智能制造、流程型智能制造、网络协同制造、大规模个性化定制、远程运维服务等新模式新业态。《十四五智能制造发展规划》指出,要大力发展智能制造装备、合力发展工业软件产品、着力打造系统解决方案,推动先进工艺、信息技术与制造装备深度融合,带动通用、专用智能制造装备加速研制和迭代升级,到2025年实现研制1,000种先进智能制造装备的目标。汽车发动机、变速箱等高效加工与近净成形成套装备,航空航天大型复合材料智能铺放、成形、加工和检测成套装备,高精度智能化热/冷连轧成套装备,百万吨以上能化乙烯成套装备,新型干法水泥全流程智能化生产线,食品高黏度流体灌装智能成套装备,连续式针织物/纯涤纶织物印染成套装备,满足GMP要求的无菌原料药智能成套装备,极大规模集成电路制造成套装备,新型平板显示制造成套装备等。融合数字孪生、大数据、人工智能、VR/AR、5G、北斗等新技术的智能工控系统、智能工作母机、协作机器人等新型装备。新型电子制造关键装备面向宽禁带半导体器件、光通讯器件、MEMS(微机电系统)器件、功率电子器件、新型显示、半导体照明、高效光伏等泛半导体产业领域的巨大市场需求,开展关键装备与工艺的研究,重点解决电子器件关键材料装备、器件制造装备等高端装备缺乏关键技术、可靠性低、工艺开发不足等问题,推动新技术研发与关键装备研发的协同发展,构建高端电子制造装备自主创新体系。(一)宽禁带半导体/半导体照明等关键装备研究针对碳化硅(SiC)、氮化镓(GaN)等为代表的宽禁带半导体技术对关键制造装备的需求,开展大尺寸(6吋)宽禁带半导体材料制备、器件制造、性能检测等关键装备与工艺研究。针对高亮度半导体照明(LED、OLED)大生产线对制造装备的需求,开展大产能材料制备、器件制造、性能检测等关键装备研发,掌握核心技术与工艺,满足大生产线要求。(二)光通讯器件关键装备及工艺研究针对光通讯器件制造对装备的需求,重点围绕硅基光电子芯片工艺装备、InP(铟磷)基等光电子芯片工艺装备、光纤器件工艺装备、光电子器件耦合封装等关键装备等开展研究,掌握核心技术,实现产品应用,提升国内光通讯器件制造能力及工艺水平。(三)MEMS器件/电力电子器件等关键装备与工艺研究针对MEMS器件、电力电子器件等领域对装备的特殊工艺需求,开展材料制备、芯片制造、特种封装、性能检测等关键装备与工艺的研发,掌握关键技术、开发特色工艺,提高国产装备的工艺适应性及可靠性。研究基于国产装备为主的成套工艺,完成对国产装备的工艺优化、可靠性验证及集成应用,打造自主产业链,提升产业竞争力。(四)高效光伏电池关键装备及工艺研究针对下一代高效光伏电池技术(PERC、HIT、黑硅电池等)对关键装备及工艺的需求,开展大产能、高转换效率光伏电池制造工艺装备、自动化制造装备、核心工艺等研究,降低电池片制造成本,转换效率达到国际领先水平,实现批量销售。(五)新材料,新器件关键电子装备与核心部件研究针对石墨烯、碳基电子器件、柔性显示、光互联等国际上不断出现的新材料、新器件、新工艺对半导体技术相关的装备需求,开展面向电子器件应用石墨烯材料制备装备、大面积转移装备、石墨烯电子器件制造装备、柔性显示有机膜材料制备装备、柔性显示有机器件制造及检测装备、碳基电子器件制造装备、光互联器件制备装备、高密度封装等方面的关键装备开发,满足研发或产业化需求,推动新技术研发与装备研发的协同发展。运动控制系统行业下游应用领域发展情况(一)运动控制系统半导体制造装备行业领域发展情况半导体作为信息产业的基础和核心组成部分,是关系国民经济和社会发展全局的基础性、先导性和战略性产业。根据世界半导体贸易统计组织(WSTS)统计数据,中国半导体市场规模由2014年的917亿美元增长至2019年的1,441亿美元,2019年占全球半导体市场规模的34.95%。当前的国际政经环境及我国半导体自主可控的需求,带动了我国半导体装备制造的快速发展。硅片设备、制造设备,以及包含固晶机、贴片机、焊线机、划片机、倒装机、切筋成型设备、清洗机、测试机、分选机和探针台等在内的封装、测试设备等半导体装备需求旺盛。根据国际半导体产业协会(SEMI)统计,2020年中国半导体设备行业市场规模达187.20亿美元,同比增长39.18%。2009年至2020年,中国半导体设备行业市场规模复合增长率为31.25%。根据《上海集成电路产业发展研究报告》,2019年我国半导体装备(该数据包括集成电路、LED、面板、光伏等设备)的国产化率约为18.8%,其中集成电路设备国产化率仅为8%左右,未来空间巨大。(二)运动控制系统工业机器人行业领域发展情况工业机器人广泛应用于机械制造、汽车制造、船舶制造、电子、物流、化工等现代工业领域,是产业转型升级、实现智能制造的重要抓手。工业机器人包括多关节机这人、SCARA机器人、坐标机器人、并联机器人等多种类型,随着技术不断成熟,工业机器人整体往更加高速、高精度、智能化、柔性化等方向发展。我国早在2013年就成为全球工业机器人的最大市场,当年装机量超过日本、美国、韩国、德国之总和。根据国际机器人联合会(IFR)及中国机器人产业联盟(CRIA)统计数据,2014年至2020年间,我国工业机器人销量由5.71万台增至15.60万台,年复合增长率达18.24%,2021年市场规模有望突破70亿美元。2017年,我国工业机器人的国产化率约为29%,其中高端机器人国产化率为17.5%,空间同样巨大。(三)运动控制系统数控机床行业领域发展情况数控机床是装备制造的工业母机,机床产业的技术水平、加工效率、精准程度及长期稳定可靠工作对一个国家制造业至关重要。随着制造业加速转型,精密模具、新能源、航空航天、轨道交通、3D打印、医疗器械等新兴产业迅速崛起,其生产制造过程高度依赖数控机床等智能制造装备,这将有力推动高速、高精、高效、高稳定性、智能化、多轴化、复合化等高档数控机床的发展。中国制造业的规模决定中国数控高精密机床拥有广阔的提升空间。但我国数控机床企业主要定位于中低端市场,高端产品渗透率虽在提升但仍处于较低水平。根据前瞻研究院整理的资料,2018年我国低档数控机床国产化率约82%,中档数控机床国产化率约65%,高档数控机床国产化率仅约6%。我国国产机床并非没有市场,而是因为我国智能制造转型升级需求和国产机床整体水平之间不平衡不匹配,从而抑制了国产机床消费能力。《中国制造2025》规划中明确提出高端数控机床与基础设施装备之具体目标:到2025年,高档数控机床与基础制造装备国内市场占有率超过80%。高档数控机床与基础制造装备总体进入世界强国行列。未来我国机床行业的数控化提升和中高端替代具有高度确定性,高档数控系统价值约占高端数控机床成本的20%-40%,发展空间巨大。(四)运动控制系统激光装备行业领域发展情况受益于各类金属及非金属工业材料加工的旺盛需求,激光加工装备市场迎来持续稳定的增长。根据《2021年中国激光产业发展报告》,我国2020年激光设备市场销售收入已达692亿元,2014年至2020年间年复合增长率达17.72%。但目前高端激光装备的国产化率仅为10%。未来激光加工装备仍将持续往数字化、智能化、切割柔性化的趋势发展,而运动控制系统是激光加工装备的关键功能部件,是推动激光装备向更高功率、更快速度、更高精度发展的技术保障,将持续受益于激光装备市场的增长。(五)运动控制系统传统制造产业领域发展情况传统制造业是我国工业体系的基础构成,其健康稳定发展对我国国民经济发展具有深远影响。中国装备制造业的提升不仅仅是在半导体、数控机床、工业机器人、激光精密装备等高端装备领域,还包括纺织、印刷、包装、焊接、压铸、冲压、注塑、压装等更广泛的各类工业装备。在新的发展阶段,各类制造产业都迫切需要通过先进制造技术实现装备和工艺的数字化、智能化提升,并依托工业数据进行智能分析,实现运维、能耗、产能、效率、质量等多维度价值提升。一方面,印刷、纺织、包装、食品、冶金等多种传统制造产业为满足新经济环境下对高品质、定制化和快速服务响应的需求,需要对自身进行智能化升级改造,以满足新需求、开拓新市场;另一方面,传统制造业亟需提升数字化、网络化、智能化水平以解决劳动力严重短缺、人力成本上升、柔性化生产能力瓶颈、市场响应缓慢、产品同质化严重等产业发展痛点。同时,经过多年发展,传统制造产业的地方特色集聚现象愈发明显,行业共性的智能化升级需求不断显现,并呈现出由点带面加速落地的示范推广效应。我国运动控制系统企业基于对本土需求的深刻理解和更强的本地化技术服务能力,将在赋能传统制造业,推动转型升级和智能化改造中发挥重要作用。我国制造业自身存在的问题(一)自主创新能力不强我国是制造业大国,但多数制造企业在国际产业链分工中仍处于制造—加工—组装低技术含量和低附加值环节,创新能力不强。尤其在高端产品创新设计方面,设计工具软件受制于人,设计方法和理念不够先进,创新设计能力较为薄弱。2015年,我国集成电路进出口逆差1600多亿美元,众多高端芯片的核心技术尚无法突破,企业被迫将大部分利润用于购买国外专利授权,产业自主发展的能力不强,难以打破市场垄断。(二)基础能力薄弱,产品质量不高我国制造业质量基础相对薄弱,高性能液压件与气动元件、高速精密轴承、大功率变频技术、特种执行机构、仪器仪表传感器、工控软件系统等发展滞后。产品质量和技术标准整体不高,出口产品召回问题不断,严重影响着我国制造业的国际形象。此外,制造业每年直接质量损失超过2000亿元,间接损失超过1万亿元。(三)资源利用效率偏低我国部分传统制造行业高投入、高消耗、高污染、低效益的粗放式生产方式,加剧了对生态环境的破坏。全国钢铁、建材、化工等行业单位产品能耗比国际先进水平高出10%-20%;机电产品中量大面广的燃煤工业锅炉运行效率比国外先进水平低15~20%。制造业可持续发展遇到瓶颈。我国大部分地区和行业的信息化仍处于以局部应用为主的初级阶段,且不同地区、行业和不同规模企业间信息化水平尚存在明显差距。面对网络协同制造、大规模个性化定制等新型生产模式的变革,认识不充分,准备不足,传统制造业将面临二次淘汰的风险。绿色制造重点面向我国制造业发展中高能耗、高污染的问题,以提高资源能源效率和降低环境负荷为主线,以绿色产品、绿色工厂为目标,掌握生态设计理论与工具、绿色制造方法与工艺、试验验证平台、绿色标准与规范等基础共性技术,推广基础制造工艺绿色化、流程工业绿色化技术,提升通用设备产品能效、工业废弃物回收再制造与再资源化等生态效率水平。(一)基于绿色理念的减量化设计与创新设计通过创新研发,突破新材料应用及改性设计、节能降噪设计、个性化定制设计、可拆解与回收设计等生态设计关键技术。掌握全生命周期高效绿色循环再利用基础理论及关键技术,实现战略性资源高效绿色循环再利用。研究典型绿色产品新原理、新结构设计及应用关键技术,开发一批绿色制造前沿技术、核心技术与装备,开发推广绿色产品,引导绿色生产。(二)绿色加工工艺与装备重点研究基础工艺绿色化技术、流程工业绿色工艺技术、量大面广的典型通用设备产品节能、减排、降耗技术。实施重点行业系统改造的示范应用。开发高效清洁基础制造工艺及装备、无害化表面处理工艺技术、少无切削液清洁加工工艺与设备、钢铁短流程工艺、有色金属清洁冶炼工艺。开展制造工艺创新和集成应用,加快实现重点行业制造系统和装备的绿色升级。(三)制造系统能效优化关键技术围绕制造系统能效优化与提升和终端用能产品节能,突破产品能效及其集成优化匹配技术,制造系统机群综合能效模型与智能分析技术、机群综合能效的智能协同优化控制技术;掌握系统能效分析与获取、能效评价、监控与优化管理、设备系统能效提升、工艺系统多目标决策优化、工件比能效率提升等系列关键技术;在规模以上企业开展车间、工厂以及产业集群的能耗定额管理和高能效优化运行,推行制造系统能效评价和优化应用。智能制造与装备制造业概述智能制造是基于新一代信息技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动各个环节,具有自感知、自决策、自执行、自适应、自学习等特征,旨在提高制造业质量、效益和核心竞争力的先进生产方式。作为制造强国建设的主攻方向,智能制造发展水平关乎我国未来制造业的全球地位,对于加快发展现代产业体系,巩固壮大实体经济根基,构建新发展格局,建设数字中国具有重要作用。智能制造以工艺装备为核心,以数据为基础,通过制造技术突破、工艺创新和业务流程再造,实现生产制造的数字化、网络化、智能化。智能制造是一种先进的生产方式,怎样生产和用什么生产则依赖于装备制造业提供具体的智能制造装备。装备制造业的技术水平是衡量一个国家工业化水平的重要标准。智能制造装备集机械系统、运动控制系统、信息管理系统等多种技术于一体,具备高速、高精度、高实时响应的作业性能,是有效减少生产过程对人力劳动的依赖,显著提高生产效率、生产精度和生产质量的先进工业装备。智能制造装备具有感知、控制、决策、执行、数据闭环反馈功能,是先进制造技术、信息技术和智能技术的高度集成。先进工艺、信息技术与智能制造装备的深度融合,推动实现了数字化、网络化、智能化的智能制造。工业传感器针对工业互联、智能制造的高端需求,顺应传感器微型化、集成化、智能化发展趋势,形成一批高端传感器和仪器仪表产品,支撑我国智能制造发展,解决微纳传感器硅基兼容制造、封装、可靠性、集成化等核心共性技术,引领未来发展。(一)工业互联网用微纳传感器研究无源无线多参数监测传感器,高能量密度振动能量收集器等前沿技术。研发传感器与电路协同设计技术及设计工具,传感器与电路单片集成工艺技术,硅基功能薄膜兼容制造等关键共性技术。开发单片集成传感器,阵列传感器,多功能传感器,低功耗传感器,无线集成传感器等产品。(二)离散制造业用微纳传感器研究柔性衬底传感器,芯片级原子效应传感器等前沿技术,研发数字全场激光超声检测技术,高精度二维三维光栅测试等关键共性技术。研发运动部件温度、应变、振动传感器,转速传感器,微型继电器,微型电场传感器,多维位移同步测量传感器,微型高精度姿态测量单元等产品。(三)流程工业用微纳传感器研究高精度谐振式压力传感器,微型声矢量传感器等前沿技术。研发传感器芯片与封装材料特性测试技术及其数据库,微传感器可靠性及其测试等关键共性技术。研发高温压力传感器、风速风向传感器、红外高温传感器、工业现场气体检测传感器等产品。(四)智能制造用仪器仪表研究智能仪器仪表可靠性建模、设计与仿真,参数标定与校准、非线性补偿方法等动态测试与性能评估,关键部件芯片化等前沿技术;研发复杂工业测量仪表在线标定,高端智能测量仪表设计、精确自动补偿、生产工艺、装配等,在线分析仪器小型化关键部件、微弱信号精密检测等共性关键技术;研发高精度压力/质量/流量/物位仪表,压力/质量流量仪表在线批量化标定装置,小型化在线分析仪、感知/控制/驱动一体化控制器等产品。(五)特种专用仪器仪表研究力热平衡结构设计、多传感器三维纳米定位等纳米三坐标测量,工件姿态和运动参数测量、空间坐标测量、大型零部件尺寸和形位误差测量、激光跟踪等大型装备制造智能化测量等前沿技术,研发工业现场级虚拟测量、工业设施现场故障诊断、特种执行机构和控制阀设计、制造和仿真等共性关键技术,研制激光跟踪测量仪器、现场级虚拟测量仪表、复杂机械运行故障检测等工业现场专用诊断仪器、特种执行机构和控制阀等。运动控制系统行业概况(一)运动控制系统基本概述以反馈控制为核心、机构为被控对象、数学为基础的运动控制技术是人类发明和制造机器的过程中发展起来的一门科学技术。人类通过运动控制技术来制造更有序、高效、高速、精密、稳定和可靠的好机器。机器改变世界,而运动控制技术改变机器设计与制造,是现代工业不可或缺的制器之技。现代运动控制技术的发展起源于工业革命后对蒸汽机、电动机等各类机械设备进行精确控制的想法。得益于现代控制理论、微电子学、计算机技术的进步,运动控制技术成为现代工业自动化发展最为活跃的领域之一,并已广泛应用于微电子、机器人、数控机床、电子加工和检测、生产自动化等各类工业制造领域。在现代化工业时代,运动控制技术的应用水平是衡量一个国家装备自动化、智能化水平的标志,体现了制造业的发展水平和市场竞争力。运动控制系统是智能制造装备的核心基础部件,决定了装备的精度、效率,是不同品牌装备形成差异化的重要环节。从基本结构上看,典型的运动控制系统主要包括控制器、驱动器+电机(执行器)和传感器三大部件。其具体功能是在复杂条件下,将预定的控制方案、规划指令转变成期望的机械运动,实现机械运动高速、高精度的轨迹和位置控制、速度控制、转矩控制或力控制。其中,运动控制器相当于运动控制系统的大脑,驱动器+电机相当于心脏和血管,传感器则是神经系统的感知单元。而机械系统就是承载任务的四肢。运动控制器向驱动器发送控制指令,驱动器将其转化为能够运行电机的电流,驱动电机运转,进而带动工作机械(负载)实现特定运动。同时,电机和机械系统的多种传感器经过信号处理将实时信息反馈给控制器,控制器进行实时调整,保证整个系统的稳定运转。运动控制系统由硬件和软件两部分集成,硬件即工业控制板卡,包括主控单元、信号处理等部分,软件包括运动控制算法、逻辑任务、系统调度及相关工业应用软件。硬件的质量、结构,软件、算法的优劣,共同决定了运动控制系统的精度、效率。在硬件的差异化不明显的情况下,软件算法是运动控制系统的关键。运动控制软件可在使用过程中通过升级来提升性能或改变用途,从而使智能化装备具有真正的柔性。在装备制造业高质量发展,整体制造业向精益管理综合能力和全局效益提升方向发展的背景下,运动控制系统的核心指标就应包括:运动控制系统的整体可靠性、稳定性,适用于不同应用场景的性能和功能指标(高速高精、高实时性和高带宽等)和快速二次开发能力,以及人机交互的友好、易用与可重构,针对机械系统的预测性维护(智能感知与故障诊断)能力,与产线及周边设备交互并参与整体节拍效率、产能以及供应链的决策等。(二)运动控制系统核心部件运动控制器是指以逻辑控制单元为核心,以传感器为信号敏感元件,以电机或动力装置和执行单元为控制对象的一种控制装置,其主要任务是根据运动控制的要求和传感器件的信号进行必要的逻辑、数学运算,为电机或其它动力和执行装置提供正确的控制信号。运动控制器由硬件、固件、软件等组成,其中硬件部分包括微处理器、存储器、接口电路、通信接口、电源等;固件是指固化在微处理器、存储器、可编程逻辑器件等元件中的软件;软件部分由实时操作系统、运动控制指令编译器、运动控制参数的预处理及优化、运动控制函数、通信管理等模块构成。运动控制器负责向伺服系统等部件传递控制指令,是运动控制系统的核心模块,其性能直接决定了运动控制系统的性能水平。运动控制器可分为插卡式运动控制器、嵌入式运动控制器和网络式运动控制器。插卡式运动控制器又称为PC-Based运动控制器,以板卡形态存在,通常采用高性能DSP和FPGA作为核心处理器。用户通常以PC机作为信息处理平台,运动控制器以插卡形式嵌入PC机,即PC+运动控制器的模式,将PC机的信息处理能力和开放式的特点与运动控制器的运动控制能力有机地结合在一起,可实现高性能多轴协调运动控制和高速点位运动控制。国内市场主要代表厂商包括固高科技、雷赛智能、美国泰道、翠欧、众为兴等。以工业计算机的形态存在,集成了工业计算机和插卡式运动控制器。在延续了插卡式运动控制器运动控制性能的同时,可以实现普通PC机的基本功能,是用户理想的嵌入式一体化解决方案,也是运动控制器发展的重要方向。国内市场主要代表厂商包括FANUC、固高科技、翠欧、ACS等。网络式运动控制器的形态可以是插卡式,也可以是嵌入式,或者是独立运行模式。其与伺服驱动系统的链接是采用各类工业总线形式,如Ethercat、Profinet、DeviceNet、Sercos、CC-Link、RTEX、MII/III。过去由于工业总线均来自欧美和日本,所以网络式运动控制器基本为国外垄断,主要厂家包括倍福、西门子、施耐德、三菱、松下、安川等。固高科技着力发展我国自主可控的多主从等环网的网络架构gLink系列,自2016年陆续推出各种形式的系列产品。伺服系统是一种能对机械运动按预定要求进行自动控制的系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角),实现输出变量精确跟随或复现输入变量。伺服系统通常由驱动器和电机构成。驱动器是用来控制电机的一种装置,主要应用于高精度的定位系统,一般通过位置、速度和力矩三种方式对伺服电机进行控制,实现高精度的传动系统定位。电机是指在伺服系统中控制机械元件运转的发动机,可精准控制速度,位置,可将电压信号转化为转矩和转速以驱动控制对象。交流伺服系统依据不同的电机运行原理分为永磁同步交流伺服系统、感应交流伺服系统、磁阻同步交流伺服系统和无刷直流伺服系统,当前市场以永磁同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门头牌匾施工方案
- 物业管理培训知识
- 排水沟疏浚施工方案
- 厨师工资协议合同范例
- 同行之间拿车合同范例
- 公益提供饮品合同范例
- 班级荣誉激励制度的设立计划
- 促进班级凝聚力的有效措施计划
- 职业网络拓展的策略计划
- 生产计划中的时间管理策略
- 2024-2025学年山东省济南市九年级(上)期末语文试卷(含答案)
- 邓宗良《煤油灯》阅读答案
- 2025年皖北卫生职业学院单招职业技能测试题库参考答案
- 2024年广州市公安局招聘交通辅警考试真题
- 随机交易策略(TB版)
- 1.1 锐角三角函数(第1课时) 课件 2024-2025学年北师大版九年级数学下册
- 2025年全国高考体育单招政治时事填空练习50题(含答案)
- 中华人民共和国学前教育法-知识培训
- 2024年计算机二级WPS考试题库380题(含答案)
- 河北省工伤职工停工留薪期分类目录 (工伤)
- 人民调解档案规范文本.doc调解文书的格式及使用说明
评论
0/150
提交评论