




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中档解答题特训之——强化训练篇强化训练(一)1.如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).(Ⅰ)求∠ABC;(Ⅱ)若∠A=,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.2.某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分成抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)写出a的值;(2)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X表示其中初中生的人数,求X的分布列和数学期望.3.如图,等腰梯形ABCD中,AD∥BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,PA=AB=BC=2AO=2,BO=.(1)证明:PA⊥BO;(2)求二面角A﹣BP﹣D的余弦值.4.已知直线l:(其中t为参数,α为倾斜角).以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=.(1)求C的直角坐标方程,并求C的焦点F的直角坐标;(2)已知点P(1,0),若直线l与C相交于A,B两点,且=2,求△FAB的面积.强化训练(一)参考答案与解析1.如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).(Ⅰ)求∠ABC;(Ⅱ)若∠A=,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)利用正弦定理,三角函数恒等变换的应用化简已知可得cosBsinC=sinBsinC,结合sinC≠0,可求tanB=1,结合范围B∈(0,π),即可求得B的值.(Ⅱ)由已知利用余弦定理可得BC2=12+22﹣2×1×2×cosD=5﹣4cosD,由已知及(Ⅰ)可知,利用三角形面积公式可求S△ABC,S△BDC,从而可求,根据正弦函数的性质即可得解四边形ABDC面积的最大值.【解答】(本题满分为12分)解:(Ⅰ)在△ABC中,∵a=b(sinC+cosC),∴sinA=sinB(sinC+cosC),…(1分)∴sin(π﹣B﹣C)=sinB(sinC+cosC),∴sin(B+C)=sinB(sinC+cosC),…(2分)∴sinBcosC+cosBsinC=sinBsinC+sinBcosC,…(3分)∴cosBsinC=sinBsinC,又∵C∈(0,π),故sinC≠0,…(4分)∴cosB=sinB,即tanB=1.…(5分)又∵B∈(0,π),∴.…(6分)(Ⅱ)在△BCD中,DB=2,DC=1,∴BC2=12+22﹣2×1×2×cosD=5﹣4cosD.…(7分)又,由(Ⅰ)可知,∴△ABC为等腰直角三角形,…(8分)∴,…(9分)又∵,…(10分)∴.…(11分)∴当时,四边形ABDC的面积有最大值,最大值为.…(12分)【点评】本题主要考查了正弦定理、余弦定理、三角形面积公式及三角恒等变换等基础知识的应用,考查了运算求解能力,考查了化归与转化思想、函数与方程思想,属于中档题.2.(2016•西城区二模)某中学有初中学生1800人,高中学生1200人,为了解学生本学期课外阅读时间,现采用分成抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)写出a的值;(2)试估计该校所有学生中,阅读时间不小于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取3人,并用X表示其中初中生的人数,求X的分布列和数学期望.【考点】CG:离散型随机变量及其分布列;CB:古典概型及其概率计算公式;CH:离散型随机变量的期望与方差.【分析】(1)根据频率频率直方图的性质,可求得a的值;(2)由分层抽样,求得初中生有60名,高中有40名,分别求得初高中生阅读时间不小于30小时的学生的频率及人数,求和;(3)分别求得,初高中生中阅读时间不足10个小时的学生人数,写出X的取值及概率,写出分布列和数学期望.【解答】解:(1)由频率直方图的性质,(0.005+0.02+a+0.04+0.005)×10=1,a=0.03,(2)由分层抽样可知:抽取的初中生有60名,高中有40名,∵初中生中,阅读时间不小于30小时的学生的频率为(0.03+0.005)×10=0.25,∴所有的初中生阅读时间不小于30小时的学生约有0.25×1800=450人,同理,高中生阅读时间不小于30小时的学生的频率为(0.03+0.005)×10=0.035,学生人数约为0.35×1200=420人,所有的学生阅读时间不小于30小时的学生约有450+420=870,(3)初中生中阅读时间不足10个小时的学生的频率为0.005×10=0.05,样本人数为0.05×60=3人,同理,高中生中阅读时间不足10个小时的学生的频率为0.005×10×40=2,故X的可能取值为:1,2,3,P(X=1)==,P(X=2)==,P(X=3)==,∴X的分布列为:X123P∴E(X)=1×+2×+3×=.【点评】本题考查频率分布直方图的应用,分布列和期望求法,考查计算能力,属于中档题.3.如图,等腰梯形ABCD中,AD∥BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,PA=AB=BC=2AO=2,BO=.(1)证明:PA⊥BO;(2)求二面角A﹣BP﹣D的余弦值.【考点】MJ:与二面角有关的立体几何综合题.【分析】(1)证明AO⊥BO,BO⊥PO,可得BO⊥平面PAO,即可证明PA⊥BO;(2)取PB的中点E,连接AE,DE,证明∠AED是二面角A﹣BP﹣D的平面角,利用余弦定理,即可求二面角A﹣BP﹣D的余弦值.【解答】(1)证明:∵AB=2AO=2,BO=,∴AB2=AO2+BO2,∴AO⊥BO,∵P在平面ABCD的射影O恰在AD上,∴BO⊥PO,∵AO∩PO=O,∴BO⊥平面PAO,∵PA⊂平面PAO,∴PA⊥BO;(2)解:取PB的中点E,连接AE,DE,∵PA=2AO=2,∴PO=,∵BO⊥PO,∴PB=,∵PD=BD=2∴DE⊥PB,∵PA=AB=2,∴AO⊥PB,∴∠AED是二面角A﹣BP﹣D的平面角.∵AE=,DE=,AD=4,∴cos∠AED==﹣.【点评】本题考查线面垂直的判定,考查面面角,考查学生分析解决问题的能力,正确作出面面角是关键.4.已知直线l:(其中t为参数,α为倾斜角).以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=.(1)求C的直角坐标方程,并求C的焦点F的直角坐标;(2)已知点P(1,0),若直线l与C相交于A,B两点,且=2,求△FAB的面积.【考点】Q4:简单曲线的极坐标方程.【分析】(1)原方程变形为ρ2sin2θ=ρcosθ,利用互化公式可得:C的直角坐标方程.(2)把l的方程代入y2=x得t2sin2α﹣tcosα﹣1=0,利用根与系数的关系及其已知可得:|t1﹣t2|=2|t1t2|,平方得,可得sin2α=1,即可得出.【解答】解:(1)原方程变形为ρ2sin2θ=ρcosθ,∵x=ρcosθ,y=ρsinθ,∴C的直角坐标方程为y2=x,其焦点为.(2)把l的方程代入y2=x得t2sin2α﹣tcosα﹣1=0,则,①,即|t1﹣t2|
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【借款协议】循环借款合同5篇
- 合伙共同经营宾馆合同6篇
- 合同管理岗位职责
- GB/T 45574-2025数据安全技术敏感个人信息处理安全要求
- 网络推广服务协议适用于元起拍活动模板
- 合同范本之合同期满个人工作总结模板
- 2025年辛酮项目立项申请报告
- 家政保姆雇佣协议范本6篇
- 自愿退学协议书
- 签约入股协议书
- 糖尿病感染性并发症
- 2024年秋江苏开放大学文献检索与论文写作参考范文一:行政管理专业
- 2024年工业区办公厂房无偿出租协议
- 培训学校卫生管理制度大全
- 《阻燃材料与技术》课件全套 颜龙 第1讲 绪论 -第11讲 阻燃性能测试方法及分析技术
- 会议服务倒水礼仪培训
- 2024年湖南省高考生物试卷真题(含答案解析)
- 患者投诉与满意度反馈管理制度
- 2024-2025学年中职数学拓展模块一 (下册)高教版(2021·十四五)教学设计合集
- 2024年吉林省长春市中考地理试卷(含答案与解析)
- 基于平衡计分卡绩效管理研究-以青岛啤酒为例
评论
0/150
提交评论