初一初二数学重点知识点总结_第1页
初一初二数学重点知识点总结_第2页
初一初二数学重点知识点总结_第3页
初一初二数学重点知识点总结_第4页
初一初二数学重点知识点总结_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一初二数学重点知识点总结相反数

(1)相反数的概念:只有符号不同的两个数叫做互为相反数.

(2)相反数的意义:把握相反数是成对消失的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.

(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.

(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.

代数式求值

(1)代数式的:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.

(2)代数式的求值:求代数式的值可以直接代入、计算.假如给出的代数式可以化简,要先化简再求值.

题型简洁总结以下三种:

①已知条件不化简,所给代数式化简;

②已知条件化简,所给代数式不化简;

③已知条件和所给代数式都要化简.

3由三视图推断几何体

(1)由三视图想象几何体的外形,首先,应分别依据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的外形,然后综合起来考虑整体外形.

(2)由物体的三视图想象几何体的外形是有肯定难度的,可以从以下途径进展分析:

①依据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的外形,以及几何体的长、宽、高;

②从实线和虚线想象几何体看得见局部和看不见局部的轮廓线;

③熟记一些简洁的几何体的三视图对简单几何体的想象会有帮忙;

④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法

初一初二数学重点学问点总结2

1、边:两组对边分别平行;四条边都相等;相邻边相互垂直。

2、内角:四个角都是90°;

3、对角线:对角线相互垂直;对角线相等且相互平分;每条对角线平分一组对角;

4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴)。

5、正方形具有平行四边形、菱形、矩形的一切性质。

6、特别性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。

7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。

初一初二数学重点学问点总结3

平面直角坐标系

1.定义:平面内画两条相互垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。

2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。

3.原点的坐标是(0,0);

纵坐标一样的点的连线平行于x轴;

横坐标一样的点的连线平行于y轴;

x轴上的点的纵坐标为0,表示为(x,0);

y轴上的点的横坐标为0,表示为(0,y)。

4.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个局部,分别叫做第一象限、其次象限、第三象限和第四象限。坐标轴上的点不属于任何象限。

5.几个象限内点的特点:

第一象限(+,+);其次象限(—,+);

第三象限(—,—);第四象限(+,—)。

6.(x,y)关于原点对称的点是(—x,—y);

(x,y)关于x轴对称的点是(x,—y);

(x,y)关于y轴对称的点是(—x,y)。

7.点到两轴的距离:点P(x,y)到x轴的距离是︱y︳;

点P(x,y)到y轴的距离是︱x︳。

8.在第一、三象限角平分线上的点的坐标是(m,m);

在其次、四象限叫平分线上的点的坐标是(m,—m)。

不等式与不等式组

(1)不等式

用不等号(,≥,≤,≠)连接的式子叫做不等式。

(2)不等式的性质

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

(3)一元一次不等式

用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

(4)一元一次不等式组

一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

点、线、面、体学问点

1.几何图形的组成

点:线和线相交的地方是点,它是几何图形中最根本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

2.点动成线,线动成面,面动成体。

点、直线、射线和线段的表示

在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

留意:

(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:

①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

角的种类

锐角:大于0°,小于90°的角叫做锐角。

直角:等于90°的角叫做直角。

钝角:大于90°而小于180°的角叫做钝角。

平角:等于180°的角叫做平角。

优角:大于180°小于360°叫优角。

劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

周角:等于360°的.角叫做周角。

负角:根据顺时针方向旋转而成的角叫做负角。

正角:逆时针旋转的角为正角。

0角:等于零度的角。

余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

还有很多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来推断平行)。

初一初二数学重点学问点总结4

一元一次方程:

①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

二元一次方程:

含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

解二元一次方程组的方法:代入消元法/加减消元法。

一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

一元二次方程的二次函数的关系

大家已经学过二次函数(即抛物线)了,对他也有很深的了解,似乎解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特别状况,就是当Y的0的时候就构成了一元二次方程了。那假如在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

初一初二数学重点学问点总结5

两条平行线之间的距离:

是指从两条平行直线中的一条直线上的一点作另一条直线的垂线段的长;

注:

①能表示两条平行线之间的距离的线段与这两条平行线都垂直;

②平行线的位置确定之后,它们之间的距离是定值,它不随垂线段位置的转变而转变;

③平行线间的距离到处相等。

三种距离定义:

1.两点间的距离——连接两点的线段的长度;

2.点到直线的距离——直线外一点到这条直线的垂线段的长度;

3.两平行线的距离——两天平行线中,一条直线上的点到另一条直线的垂线段长度。

两直线间的距离公式:

设两条直线方程为

Ax+By+C1=0

Ax+By+C2=0

则其距离公式为|C1-C2|/√(A2+B2)

推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,

则满意Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为

d=|Aa+Bb+C2|/√(A+B)=|-C1+C2|/√(A+B)

=|C1-C2|/√(A+B)

初一初二数学重点学问点总结6

分式的根本性质:

分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。

用式子表示为A/B=(A-C)/(B-C);A/B=(A-C)/(B-C)(C不等于0),其中A、B、C是整式

留意:(1)“C是一个不等于0的整式”是分式根本性质的一个制约条件;

(2)应用分式的根本性质时,要深刻理解“同”的含义,避开犯只乘分子(或分母)的错误;

(3)若分式的分子或分母是多项式,运用分式的根本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;

(4)分式的根本性质是分式进展约分、通分和符号变化的依据。

初一初二数学重点学问点总结7

中心对称图形

正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆,平行四边形。

中心对称图形并不只有一个对称点,比方直线,再比方正弦曲线。

只是中心对称的图形需要满意不是轴对称图形。比方平行四边形。也有许多六边形、八边形等等只是中心对称而不是轴对称图形。

既不是轴对称图形又不是中心对称图形

等腰三角形,直角梯形等。

一般四边形有的是轴对称图形。

中心对称的性质

①关于中心对称的两个图形是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论