




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在直角坐标系xOy中,若抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域(不包括直线y=﹣2和x轴),则l与直线y=﹣1交点的个数是()A.0个 B.1个或2个C.0个、1个或2个 D.只有1个2.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1083.小明将某圆锥形的冰淇淋纸套沿它的一条母线展开若不考虑接缝,它是一个半径为12cm,圆心角为的扇形,则A.圆锥形冰淇淋纸套的底面半径为4cmB.圆锥形冰淇淋纸套的底面半径为6cmC.圆锥形冰淇淋纸套的高为D.圆锥形冰淇淋纸套的高为4.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元 B.150元 C.160元 D.200元5.下列运算正确的是()A.a2•a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=66.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣17.方程的解是()A. B. C. D.8.下列运算正确的是()A.2a2+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab9.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A.2m B.m C.3m D.6m10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为().A.60° B.75° C.85° D.90°11.如图是由5个相同的正方体搭成的几何体,其左视图是()A. B.C. D.12.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线m∥n,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B、C,连接AC、BC,若∠1=30°,则∠2=_____.14.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=32x15.已知一个正六边形的边心距为,则它的半径为______.16.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.17.如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为______.18.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).20.(6分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.21.(6分)综合与实践﹣猜想、证明与拓广问题情境:数学课上同学们探究正方形边上的动点引发的有关问题,如图1,正方形ABCD中,点E是BC边上的一点,点D关于直线AE的对称点为点F,直线DF交AB于点H,直线FB与直线AE交于点G,连接DG,CG.猜想证明(1)当图1中的点E与点B重合时得到图2,此时点G也与点B重合,点H与点A重合.同学们发现线段GF与GD有确定的数量关系和位置关系,其结论为:;(2)希望小组的同学发现,图1中的点E在边BC上运动时,(1)中结论始终成立,为证明这两个结论,同学们展开了讨论:小敏:根据轴对称的性质,很容易得到“GF与GD的数量关系”…小丽:连接AF,图中出现新的等腰三角形,如△AFB,…小凯:不妨设图中不断变化的角∠BAF的度数为n,并设法用n表示图中的一些角,可证明结论.请你参考同学们的思路,完成证明;(3)创新小组的同学在图1中,发现线段CG∥DF,请你说明理由;联系拓广:(4)如图3若将题中的“正方形ABCD”变为“菱形ABCD“,∠ABC=α,其余条件不变,请探究∠DFG的度数,并直接写出结果(用含α的式子表示).22.(8分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为;②当AC=3,BC=4时,AD的长为;当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.23.(8分)如图,已知点D在△ABC的外部,AD∥BC,点E在边AB上,AB•AD=BC•AE.求证:∠BAC=∠AED;在边AC取一点F,如果∠AFE=∠D,求证:.24.(10分)2018年4月22日是第49个世界地球日,今年的主题为“珍惜自然资源呵护美丽国土一讲好我们的地球故事”地球日活动周中,同学们开展了丰富多彩的学习活动,某小组搜集到的数据显示,山西省总面积为15.66万平方公里,其中土石山区面积约5.59万平方公里,其余部分为丘陵与平原,丘陵面积比平原面积的2倍还多0.8万平方公里.(1)求山西省的丘陵面积与平原面积;(2)活动周期间,两位家长计划带领若干学生去参观山西地质博物馆,他们联系了两家旅行社,报价均为每人30元.经协商,甲旅行社的优惠条件是,家长免费,学生都按九折收费;乙旅行社的优惠条件是,家长、学生都按八折收费.若只考虑收费,这两位家长应该选择哪家旅行社更合算?25.(10分)分式化简:(a-)÷26.(12分)如图,抛物线与x轴交于A,B,与y轴交于点C(0,2),直线经过点A,C.(1)求抛物线的解析式;(2)点P为直线AC上方抛物线上一动点;①连接PO,交AC于点E,求的最大值;②过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使△PFC中的一个角等于∠CAB的2倍?若存在,请直接写出点P的坐标;若不存在,请说明理由.27.(12分)如图,已知点E,F分别是▱ABCD的对角线BD所在直线上的两点,BF=DE,连接AE,CF,求证:CF=AE,CF∥AE.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据题意,利用分类讨论的数学思想可以得到l与直线y=﹣1交点的个数,从而可以解答本题.【详解】∵抛物线l:y=﹣x2+bx+c(b,c为常数)的顶点D位于直线y=﹣2与x轴之间的区域,开口向下,∴当顶点D位于直线y=﹣1下方时,则l与直线y=﹣1交点个数为0,当顶点D位于直线y=﹣1上时,则l与直线y=﹣1交点个数为1,当顶点D位于直线y=﹣1上方时,则l与直线y=﹣1交点个数为2,故选C.【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答.2、A【解析】
设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.3、C【解析】
根据圆锥的底面周长等于侧面展开图的扇形弧长,列出方程求出圆锥的底面半径,再利用勾股定理求出圆锥的高.【详解】解:半径为12cm,圆心角为的扇形弧长是:,
设圆锥的底面半径是rcm,
则,
解得:.
即这个圆锥形冰淇淋纸套的底面半径是2cm.
圆锥形冰淇淋纸套的高为.
故选:C.【点睛】本题综合考查有关扇形和圆锥的相关计算解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:圆锥的母线长等于侧面展开图的扇形半径;圆锥的底面周长等于侧面展开图的扇形弧长正确对这两个关系的记忆是解题的关键.4、B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.故选B.考点:一元一次方程的应用5、D【解析】
运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.6、B【解析】
∵a+b=3,∴(a+b)2=9∴a2+2ab+b2=9∵a2+b2=7∴7+2ab=9,7+2ab=9∴ab=1.故选B.考点:完全平方公式;整体代入.7、D【解析】
按照解分式方程的步骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.8、B【解析】
根据合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则对各选项依次进行判断即可解答.【详解】A.2a2+3a2=5a2,故本选项错误;B.(−)-2=4,正确;C.(a+b)(−a−b)=−a2−2ab−b2,故本选项错误;D.8ab÷4ab=2,故本选项错误.故答案选B.【点睛】本题考查了合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则,解题的关键是熟练的掌握合并同类项的法则、平方差公式、幂的乘方与积的乘方运算法则.9、C【解析】
依据题意,三根木条的长度分别为xm,xm,(10-2x)m,在根据三角形的三边关系即可判断.【详解】解:由题意可知,三根木条的长度分别为xm,xm,(10-2x)m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:.故选择C.【点睛】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.10、C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点:旋转的性质.11、A【解析】
根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.12、B【解析】
先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、75°【解析】试题解析:∵直线l1∥l2,∴故答案为14、1【解析】
由双曲线y=32x(x>0)经过点D知S△ODF=12k=34,由矩形性质知S△AOB=2S△ODF【详解】如图,∵双曲线y=32x∴S△ODF=12k=3则S△AOB=2S△ODF=32,即12OA•BE=∴OA•BE=1,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=1,故答案为:1.【点睛】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.15、2【解析】试题分析:设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.解:如图所示,在Rt△AOG中,OG=,∠AOG=30°,∴OA=OG÷cos30°=÷=2;故答案为2.点睛:本题主要考查正多边形和圆的关系.解题的关键在于利用正多边形的半径、边心距构造直角三角形并利用解直角三角形的知识求解.16、y1<y1【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.详解:∵反比例函数y=-,-4<0,∴在每个象限内,y随x的增大而增大,∵A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4<-1,∴y1<y1,故答案为:y1<y1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.17、3【解析】
根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×=×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x的方程,从而得到答案.18、2【解析】
设MN=y,PC=x,根据正方形的性质和勾股定理列出y1关于x的二次函数关系式,求二次函数的最值即可.【详解】作MG⊥DC于G,如图所示:设MN=y,PC=x,根据题意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴当10-1x=0,即x=2时,y1最小值=12,∴y最小值=2.即MN的最小值为2;故答案为:2.【点睛】本题考查了正方形的性质、勾股定理、二次函数的最值.熟练掌握勾股定理和二次函数的最值是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)1;(2).【解析】
(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【详解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【点睛】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.20、证明见解析【解析】
根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD与△CBD中,∴△ABD≌△CBD,∴AD=CD.【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.21、(1)GF=GD,GF⊥GD;(2)见解析;(3)见解析;(4)90°﹣.【解析】
(1)根据四边形ABCD是正方形可得∠ABD=∠ADB=45°,∠BAD=90°,点D关于直线AE的对称点为点F,即可证明出∠DBF=90°,故GF⊥GD,再根据∠F=∠ADB,即可证明GF=GD;(2)连接AF,证明∠AFG=∠ADG,再根据四边形ABCD是正方形,得出AB=AD,∠BAD=90°,设∠BAF=n,∠FAD=90°+n,可得出∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,故GF⊥GD;(3)连接BD,由(2)知,FG=DG,FG⊥DG,再分别求出∠GFD与∠DBC的角度,再根据三角函数的性质可证明出△BDF∽△CDG,故∠DGC=∠FDG,则CG∥DF;(4)连接AF,BD,根据题意可证得∠DAM=90°﹣∠2=90°﹣∠1,∠DAF=2∠DAM=180°﹣2∠1,再根据菱形的性质可得∠ADB=∠ABD=α,故∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°,2∠DFG+2∠1+α﹣2∠1=180°,即可求出∠DFG.【详解】解:(1)GF=GD,GF⊥GD,理由:∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,∠BAD=90°,∵点D关于直线AE的对称点为点F,∠BAD=∠BAF=90°,∴∠F=∠ADB=45°,∠ABF=∠ABD=45°,∴∠DBF=90°,∴GF⊥GD,∵∠BAD=∠BAF=90°,∴点F,A,D在同一条线上,∵∠F=∠ADB,∴GF=GD,故答案为GF=GD,GF⊥GD;(2)连接AF,∵点D关于直线AE的对称点为点F,∴直线AE是线段DF的垂直平分线,∴AF=AD,GF=GD,∴∠1=∠2,∠3=∠FDG,∴∠1+∠3=∠2+∠FDG,∴∠AFG=∠ADG,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,设∠BAF=n,∴∠FAD=90°+n,∵AF=AD=AB,∴∠FAD=∠ABF,∴∠AFB+∠ABF=180°﹣n,∴∠AFB+∠ADG=180°﹣n,∴∠FGD=360°﹣∠FAD﹣∠AFG﹣∠ADG=360°﹣(90°+n)﹣(180°﹣n)=90°,∴GF⊥DG,(3)如图2,连接BD,由(2)知,FG=DG,FG⊥DG,∴∠GFD=∠GDF=(180°﹣∠FGD)=45°,∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴∠BDC=∠DBC=(180°﹣∠BCD)=45°,∴∠FDG=∠BDC,∴∠FDG﹣∠BDG=∠BDC﹣∠BDG,∴∠FDB=∠GDC,在Rt△BDC中,sin∠DFG==sin45°=,在Rt△BDC中,sin∠DBC==sin45°=,∴,∴,∴△BDF∽△CDG,∵∠FDB=∠GDC,∴∠DGC=∠DFG=45°,∴∠DGC=∠FDG,∴CG∥DF;(4)90°﹣,理由:如图3,连接AF,BD,∵点D与点F关于AE对称,∴AE是线段DF的垂直平分线,∴AD=AF,∠1=∠2,∠AMD=90°,∠DAM=∠FAM,∴∠DAM=90°﹣∠2=90°﹣∠1,∴∠DAF=2∠DAM=180°﹣2∠1,∵四边形ABCD是菱形,∴AB=AD,∴∠AFB=∠ABF=∠DFG+∠1,∵BD是菱形的对角线,∴∠ADB=∠ABD=α,在四边形ADBF中,∠AFB+∠DBF+∠ADB+∠DAF=(∠DFG+∠1)+(∠DFG+∠1+α)+α+(180°﹣2∠1)=360°∴2∠DFG+2∠1+α﹣2∠1=180°,∴∠DFG=90°﹣.【点睛】本题考查了正方形、菱形、相似三角形的性质,解题的根据是熟练的掌握正方形、菱形、相似三角形的性质.22、解:(1)①.②或.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】
(1)①当AC=BC=2时,△ABC为等腰直角三角形;
②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;
(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=AC=.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=.∴AD=AC•cosA=3×=.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=×1=.综上所述,当AC=3,BC=4时,AD的长为或.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:
如图所示,连接CD,与EF交于点Q.
∵CD是Rt△ABC的中线
∴CD=DB=AB,
∴∠DCB=∠B.
由折叠性质可知,∠CQF=∠DQF=90°,
∴∠DCB+∠CFE=90°,
∵∠B+∠A=90°,
∴∠CFE=∠A,
又∵∠ACB=∠ACB,
∴△CEF∽△CBA.23、见解析【解析】
(1)欲证明∠BAC=∠AED,只要证明△CBA∽△DAE即可;(2)由△DAE∽△CBA,可得,再证明四边形ADEF是平行四边形,推出DE=AF,即可解决问题;【详解】证明(1)∵AD∥BC,∴∠B=∠DAE,∵AB·AD=BC·AE,∴,∴△CBA∽△DAE,∴∠BAC=∠AED.(2)由(1)得△DAE∽△CBA∴∠D=∠C,,∵∠AFE=∠D,∴∠AFE=∠C,∴EF∥BC,∵AD∥BC,∴EF∥AD,∵∠BAC=∠AED,∴DE∥AC,∴四边形ADEF是平行四边形,∴DE=AF,∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24、(1)平原面积为3.09平方公里,丘陵面积为6.98平方公里;(2)见解析.【解析】
(1)先设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里,再根据总面积=平原面积+丘陵面积+土石山区面积列出等式求解即可;(2)先分别列出甲、乙两个旅行社收费与学生人数的关系式,然后再分情况讨论即可.【详解】解:(1)设山西省的平原面积为x平方公里,则山西省的丘陵面积为(2x+0.8)平方公里.由题意:x+2x+0.8+5.59=15.66,解得x=3.09,2x+0.8=6.98,答:山西省的平原面积为3.09平方公里,则山西省的丘陵面积为6.98平方公里.(2)设去参观山西地质博物馆的学生有m人,甲、乙旅行社的收费分别为y甲元,y乙元.由题意:y甲=30×0.9m=27m,y乙=30×0.8(m+2)=24m+48,当y甲=y乙时,27m=24m+48,m=16,当y甲>y乙时,27m>24m+48,m>16,当y甲<y乙时,27m<24m+48,m<16,答:当学生人数为16人时,两个旅行社的费用一样.当学生人数为大于16人时,乙旅行社比较合算.当学生人数为小于16人时,甲旅行社比较合算.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的应用.25、a-b【解析】
利用分式的基本性质化简即可.【详解】===.【点睛】此题考查了分式的化简,用到的知识点是分式的基本性质、完全平方公式.26、(1);(2)①有最大值1;②(2,3)或(,)【解析】
(1)根据自变量与函数值的对应关系,可得A,C点坐标,根据代定系数法,可得函数解析式;(2)①根据相似三角形的判定与性质,可得,根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 五年级上册数学教学设计-第三单元第1课时 因数与倍数 北师大版
- 一年级下册数学教案-综合实践 趣味拼摆| 青岛版(五四学制)
- 学习2025年雷锋精神六十二周年主题活动实施方案 (3份)-54
- 2025年河南测绘职业学院单招职业适应性测试题库带答案
- 2025年广西安全工程职业技术学院单招职业技能测试题库含答案
- 2025年广东金融学院单招职业适应性测试题库完整
- 2025年贵州航天职业技术学院单招职业技能测试题库一套
- 2025福建省安全员考试题库及答案
- 2025年度幼儿园教职工被辞退劳动权益保护合同
- 2025年度幼儿园实习教师培养与就业服务协议
- 安徽华星化工有限公司杀虫单废盐资源化处理项目环境影响报告书
- 平安健康文明主题班会
- 消防工程管理办法附流程图
- 雨水管道中粗砂回填
- 金庸群侠传x最完整攻略(实用排版)
- 团意操作流程详解课件
- SH/T 0356-1996燃料油
- GB/T 9846.4-2004胶合板第4部分:普通胶合板外观分等技术条件
- GB/T 17836-1999通用航空机场设备设施
- GB/T 13012-2008软磁材料直流磁性能的测量方法
- 2023年全国高中生物联赛竞赛试题和答案
评论
0/150
提交评论