2021年浙江省嘉兴市普通高校对口单招数学自考模拟考试(含答案)_第1页
2021年浙江省嘉兴市普通高校对口单招数学自考模拟考试(含答案)_第2页
2021年浙江省嘉兴市普通高校对口单招数学自考模拟考试(含答案)_第3页
2021年浙江省嘉兴市普通高校对口单招数学自考模拟考试(含答案)_第4页
2021年浙江省嘉兴市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年浙江省嘉兴市普通高校对口单招数学自考模拟考试(含答案)

一、单选题(20题)1.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

2.tan150°的值为()A.

B.

C.

D.

3.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2

4.执行如图的程序框图,那么输出S的值是()A.-1B.1/2C.2D.1

5.已知互为反函数,则k和b的值分别是()A.2,

B.2,

C.-2,

D.-2,

6.已知b>0,㏒5b=a,㏒b=c,5d=10,则下列等式一定成立的是()A.d=acB.a=cdC.c=adD.d=a+c

7.下列函数中是偶函数的是()A.y=x|x|B.y=sinx|x|C.y=x2+1D.y=xsinx+cosx

8.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(CUA)∩(CUB)=()A.{5,8}B.{7,9}C.{0,1,3}D.{2,4,6}

9.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法

10.函数y=log2x的图象大致是()A.

B.

C.

D.

11.在等差数列{an}中,若a3+a17=10,则S19等于()A.65B.75C.85D.95

12.cos240°=()A.1/2

B.-1/2

C./2

D.-/2

13.直线L过(-1,2)且与直线2x-3y+5=0垂直,则L的方程是()A.3x+2y-1=0B.3x+2y+7=0C.2x-3y+6=0D.2x-3y+8=0

14.A.B.C.D.

15.A.B.C.D.

16.正方体棱长为3,面对角线长为()A.

B.2

C.3

D.4

17.椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为()A.x2/16+y2/12=1

B.x2/12+y2/8=1

C.x2/8+y2/4=1

D.x2/12+y2/4=1

18.对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列

19.若集合M={3,1,a-1},N={-2,a2},N为M的真子集,则a的值是()A.-1

B.1

C.0

D.

20.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

二、填空题(20题)21.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.

22.若展开式中各项系数的和为128,则展开式中x2项的系数为_____.

23.不等式的解集为_____.

24.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.

25.

26.若长方体的长、宽、高分别为1,2,3,则其对角线长为

27.执行如图所示的流程图,则输出的k的值为_______.

28.

29.的展开式中,x6的系数是_____.

30.

31.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.

32.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.

33.右图是一个算法流程图.若输入x的值为1/16,则输出y的值是____.

34.函数y=3sin(2x+1)的最小正周期为

35.己知等比数列2,4,8,16,…,则2048是它的第()项。

36.

37.函数f(x)=+㏒2x(x∈[1,2])的值域是________.

38.

39.

40.过点(1,-1),且与直线3x-2y+1=0垂直的直线方程为

三、计算题(5题)41.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

42.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

43.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

44.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

45.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

四、简答题(5题)46.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。

47.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率

48.如图,在直三棱柱中,已知(1)证明:AC丄BC;(2)求三棱锥的体积.

49.求经过点P(2,-3)且横纵截距相等的直线方程

50.已知a是第二象限内的角,简化

五、解答题(5题)51.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

52.

53.已知等比数列{an}的公比q==2,且a2,a3+1,a4成等差数列.⑴求a1及an;(2)设bn=an+n,求数列{bn}前5项和S5.

54.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.

55.

六、证明题(2题)56.△ABC的三边分别为a,b,c,为且,求证∠C=

57.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

参考答案

1.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

2.B三角函数诱导公式的运用.tan150°=tan(180°-30°)=-tan30°=

3.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

4.C

5.B因为反函数的图像是关于y=x对称,所以k=2.然后把一式中的x用y的代数式表达,再把x,y互换,代入二式,得到m=-3/2.

6.B对数值大小的比较.由已知得5a=6,10c=6,∴5a=10c,∵5d=10,∴5dc=10c,则55dc=5a,∴dc=a

7.D

8.B集合补集,交集的运算.因为CuA={2,4,6,7,9},CuB={0,1,3,7,9},所以(CuA)∩(CuB)={7,9}.

9.C为了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理的抽样方法是分层抽样。

10.C对数函数的图象和基本性质.

11.D

12.B诱导公式的运用.cos240°=cos(60°+180°)=-cos60°=-1/2

13.A由于直线与2x-3y+5=0垂直,因此可以设直线方程为3x+2y+k=0,又直线L过点(-1,2),代入直线方程得3*(-1)+2*2+k=0,因此k=-1,所以直线方程为3x+2y-1=0。

14.D

15.C

16.C面对角线的判断.面对角线长为

17.C椭圆的标准方程.椭圆的焦距为4,所以2c=4,c=2因为准线为x=-4,所以椭圆的焦点在x轴上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以椭圆的方程为x2/8+y2/4+=1

18.D

19.A

20.A

21.4、6、8

22.-189,

23.-1<X<4,

24.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.

25.1<a<4

26.

27.5程序框图的运算.由题意,执行程序框图,可得k=1,S=1,S=3,k=2不满足条件S>16,S=8,k=3不满足条件S>16,S=16,k=4不满足条件S>16,S=27,k=5满足条件S>16,退出循环,输出k的值为5.故答案为:5.

28.R

29.1890,

30.2π/3

31.72,

32.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3

33.-2算法流程图的运算.初始值x=1/16不满足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.

34.

35.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。

36.①③④

37.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].

38.0

39.16

40.

41.

42.

43.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

44.

45.

46.(1)-1<x<1(2)奇函数(3)单调递增函数

47.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999

48.

49.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为

50.

51.(1)设成等差数列的三个正数分别为a-d,a,a+d依题意,得a-d+a+a+d=15,解得a=5,所以{bn}中的,b3,b4,b5依次为7-d,10,18+d依题意,有(7-d)(18+d)=100,解得d=2或d=-13,又因为成等差数列的三个数为正数,所以d=2.故{bn}的第3项为5,公比为2;由b3=b1×22,即5=b1×22,解得b1=f;所以{bn}是以5/4为首项,2为公比的等比数列,其通项公式为bn=5/4×2n-1=5×2n-3.

52.

53.(1)由题可得2a3+2=a2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论