幂函数教学设计_第1页
幂函数教学设计_第2页
幂函数教学设计_第3页
幂函数教学设计_第4页
幂函数教学设计_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

&教材分析:幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对精品文档放心下载数函数之后研究的又一类基本的初等函数。幂函数模型在生活中是比较常见的,谢谢阅读学习时结合生活中的具体实例来引出常见的幂函数。组织学生画出他们的图象,精品文档放心下载感谢阅读谢谢阅读精品文档放心下载谢谢阅读感谢阅读习。教学目标知识与技能:通过实例,了解幂函数的概念,结合函数的图像,了解他们的变化情况,掌握研究一般幂函数的方法和思想.谢谢阅读总结出的性质进行解释,从而达到对任一幂函数性质的分析精品文档放心下载情感、态度、价值观:通过引导学生主动参与作图,分析图像的过程,培养谢谢阅读学生的探索精神,在研究函数的变化过程中渗透辩证唯物主义观点。感谢阅读)重难点重点:从五个具体幂函数中认识并总结幂函数的性质难点:画出幂函数的图象并概括其性质,体会变化规律教学方法与手段借助多媒体,探究+反思+教学基本流程从实例观察引入课题→构建幂函数的概念→画出代表性函数图像→精品文档放心下载的幂函数性质→总结一般性研究方法→应用举例和课堂练习→小结与作业谢谢阅读$教学过程设计:(一)实例观察,引入新课(1)如果张红购买了每千克1元的蔬菜w=wp是w的函数;谢谢阅读(2)如果正方形的边长为,那么正方形的面积S=a,这里S是a的函数;感谢阅读2(3)如果立方体的边长为,那么立方体的体积V,这里V是a的函数;谢谢阅读31(4)如果一个正方形场地的面积为,那么这个正方形的边长S,这里a是精品文档放心下载2S的函数;(5)如果某人t秒内骑车行进了1km,那么他骑车的平均速度v=t,这里v是精品文档放心下载-1t的函数.若将它们的自变量全部用x来表示,函数值用y来表示,则它们的函数关系式将

是:精品文档放心下载~1yxyxyxyxyx2312感谢阅读以上问题中的函数有什么共同特征都是函数;均是以自变量为底的幂;指数为常数;自变量前的系数为幂前的系数也为1感谢阅读【设计意图】引导学生从具体的实例中进行总结,从而自然引出幂函数的一谢谢阅读般特征.(二)类比联想,探究新知、幂函数的定义幂函数的概念:一般地,函数=α叫做幂函数,其中xα是常=α系数为,未知数x在底数位置,α在指数位置)谢谢阅读\幂函数与指数函数的对比:(关键看自变量X的位置)感谢阅读()y=x4()y=1(3)y=2xx2(4)y=x2(5)y=2x(6)y=x3+212【设计意图】加深学生对幂函数定义和呈现形式的理解.、组织探究:在同一平面直角坐标系内作出下列幂函数的图像谢谢阅读1y=xy=xy=xxy=x-123

2&(;、观察图像完成下表,yxyx2yx31yx2yx1定义域RRR[0,+∞){|≠0}值域^[0,+∞)R[0,+∞)R{|≠0}奇偶性奇偶{非奇非偶奇奇[0,+∞)增单调性增增增…(0,+∞)减(-∞,0]减(-∞,0)减公共点(1,问题一:所有图像都过第几象限所有图像都过哪个公共点问题二:第一象限内函数图像的单调性是怎样的对于原点,什么样的幂函数过,什么样的幂函数不过谢谢阅读1问题三:y=x,y=x和y=x在第一象限的变化趋势有什么区别谢谢阅读232【设计意图】通过创设问题情境,激发学生的思维,并在新知探究的过程中自然形成一般方法的呈现,使学生易于领悟和接受.谢谢阅读、幂函数的性质%(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);谢谢阅读精品文档放心下载感谢阅读当αα感谢阅读x=1α精品文档放心下载【设计意图】通过创设问题情境,激发学生的思维,并在新知探究的过程中自感谢阅读然形成一般方法的呈现,使学生易于领悟和接受.三)运用新知,理论迁移【例】比较下列各组数的大小`()5.20.2和5.20.1()7171.4和8和()8(1)1.59

8比较两个数的大小方法:(1)若能化为同指数,则用幂函数的单调性比较;(2)若能化为同底数,则用指数函数的单调性比较;(3)当不能直接进行比较时,可在两个数中间插入一个中间数,间接比较。精品文档放心下载11221.5和1.7(2)4.1和5.8精品文档放心下载3353【例】证明幂函数f(x)=x在,+∞)上是增函数谢谢阅读,x+,且x<x,则-xx证明:任取x2+x11(x11f(-f(+x2)x=x-x=1xx1212因为0<x<x,所以+x>0,x+xx122121所以f())<f(xx12)=x1x12>0+x2+x2【设计意图】增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论