面排列组合二项式定理学习笔记(精华版)_第1页
面排列组合二项式定理学习笔记(精华版)_第2页
面排列组合二项式定理学习笔记(精华版)_第3页
面排列组合二项式定理学习笔记(精华版)_第4页
面排列组合二项式定理学习笔记(精华版)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

欢迎下载——精品资料精品资料精品资料考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合,组合数公式.组合数的两个性质,二项式定理,二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。一、两个原理.1.乘法原理、加法原理.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二.…第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·…m=m"..例如:n件物品放入m个抽屉中,不限放法,共有多少二、排列.1.(1)对排列定义的理解.定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.如果:两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相.从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号A”表示.A=A"+A-Cm-=A"+mA"A=nA-'规定C⁰=C"=12.含有可重元素的排列问题.对含有相同元素求排列个数的方法是:设重集S有k个不同元素a₁,az……an其中限重复数为精品资料精品资料■■例如:已知数字3、2、2,求其排列个又例如:数字5、5、5、求其排列个数?其排列个·1.(1)组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.①从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是含红球选法有C"1C¹=C■一类是不含红球的选法有CⅢ)②根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有种,依(4)排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.(5)①几个常用组合数公式②常用的证明组合等式方法例.i.裂项求和法.如:(利用ii.导数法.iii.数学归纳法.iv.倒序求和法.v.递推法(即用.精品资料精品资料证明:这里构造二项式(x+1)"(l+x)"=(1+x)²其中x”的系数,左边为四、排列、组合综合.1.1.排列、组合问题几大解题方法及题型:①直接法.②排除法.又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为A2-AT1-A3②有n件不同商品,若其中A、B排在一起有A=A²·③有n件不同商品,若其中有二件要排在一起有A²-A=注:①③区别在于①是确定的座位,有A₂种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?AH-m-A-m(插空法),当n-m+12m,即时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素:从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有A”种,m(m<n)个元素的全排列有Am种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共有种排列方法例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2).n=n!/m!;解法二:(比例分配法)⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有欢迎下载——精品资料精品资料精品资料例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有(平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有,当n-m+1≥m,即时有意义.⑧隔板法:常用于解正整数解组数的问题.在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数●x+x₂+x₃…+x₈=A=a-l+a₂-1+.₁-1=A,进而转化为求a的正整数解的个数为⑨定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有·例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。ii.从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。iii从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的欢迎下载——精品资料精品资料精品资料策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小2.组合问题中分组问题和分配问题.CgC,C²C²C²C²/A²-A4种③均匀编号分组:n个不同元素分成m组,其中r组元素个数相同且考虑各组间的顺序,其分法种数为A/A⁷-A例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为3④非均匀不编号分组:将n个不同元素分成不编号的m组,每组元素数目均不相同,且不考)6人分成三组,各组人数分别为1、2、3,其分法种数为CC;C)=12600.五、二项式定理.(a+b)"=C⁹a"b⁰+C,CaCwa欢迎下载——精品资料精品资料精品资料最大.附:一般来说(ax+by)”(a,b为常数)在求系数最大的项或最小的项时均可直接根据性质二求绝对值)的办法来求解.(4)如何来求(a+b+c)”展开式中含a"b'c'的系数呢?其中p,q,r∈N,且p+q+r=n把其系数2.近似计算的处理方法.当a的绝对值与1相比很小且n不大时,常用近似公式(1+a)"≈1+na,因为这时展开式的后面部分C²a²+C₂a³+…+C"a”很小,可以忽略不计。类似na成绩不论做什么事情都应该讲究方法,科学的方法能够加速问题解决的速度,学生学习更是如此。我们在教学过程经常会遇到这样的现象,有的学生尽管学习也欢迎下载——精品资料精品资料精品资料很认真刻苦,花了大量的时间,但学习效率不高,成绩并不是很理想。究其原因也许很多,学习的方法不当应是关键的因素之一。科学的学习方法,往往能取得事半功倍的效果。基于这个认识,我在教学过程中很注重学习方法研究,也经常有意识地对学生进行学习方法指导,不少学生取得了良好的效果。现把其定名为二是希望对想上进的求知学子有所帮助。具体内容是:一预习:“学、做、练、标”(1)学:学书本上的内容和例题,要看清和看全,甚至连书本上的注解也要看,尤其是文科后面的注释一定要看,对于知识要点要多看几遍,多想想为什么,最好能弄清楚来龙去脉,对于书上的黑体字、定理、定律和公式要动手抄写,力求能先背诵和默写,英语中的单词和短语尤其要如此。(2)做:做书本上的例题,要把自己的解题过程和书本上的例题对照一下,看看差异在什么地方,要找出差距。语文和英语自己结实关键的词语和整个句子更好,自己的解释和自己造的句子要和书本上的规范句子对照,看看有没有错误,如果有,看错误的原因是什么,自己容易弄错的地方,也许就是上课要重点解决的问(3)练:书本上的简单题目在预习时应该完成,独立完成后要检查对错,发现自己在什么地方还没有弄懂。也可以找一套有标准答案的课外资料来练习,做好的作业也要对照答案检查,看看正误,及时了解自己预习中存在的问题。预习时做的题目选题目要典型,不要过多。本阶段的重点是通过联系来发现自己预习中存在的问题,如果自己看书能解决的,应该自己再看书解决,否则要做记录,留请教老师和同学,帮助自己解决。本次做错的题目做为一级错题,打一个“,可以在资料和课本上标注,等待上课时候解决,彻底解决了,就不用上“总(4)标:在课本上标出学习的知识要点,和自己没有弄懂的难点,以及自己不够清楚的疑问点,以便上课时候重点突破。不同类型的最好用不同颜色的笔标出,二上课:“看、听、记、想”(1)看:看书本和老师在黑板上板书的重点内容,弄清出那些是自己以前没有弄懂的和不清楚的内容,如果是课本上的可以在上面标出,如果是老师补充的就应该认真记录,如果需要背诵的内容一定要准确无误。(2)听:认真听老师的讲解,教师的讲解是自己学习无法替代的,对于同学的发言也要认真地听,这其中也有别人的长处和智慧的火花。认真听取老师的讲解和同学的发言,及时筛选对自己的有用的信息,必要的要做记录。(3)记:课堂笔记是学习的基础,也是将来复习的最好资料,这里有老师的汗水,也有自己的智慧,自己不理解的和老师反复强调的重点内容一定要认真记录,尤其是教师补充的课外内容更不能放过。只要自己还没有掌握的,课本上也没有现成内容的就应该记录。自己熟悉的,课本上有现成内容的就不要记录,重做深刻(4)想:到下课的时候,一定要想一想,老师今天讲课的重点内容是什么,自己还有没有不懂的地方,如果有就应该及时请教老师和同学,把自己要学习的内容全部搞懂,不留任何遗憾。身边的同学是最好的老师,取长不短,是学习的科学三课后:“练、测、补、结”欢迎下载——精品资料精品资料精品资料(1)练:认真完成老师布置的作业,教师提供的作业应该是最好的资料,自己购买的资料如果和课本、老师布置的作业、以及做过的资料有重复的,最好不做,免得浪费时间。做过的题目一定要对照标准答案,找出错误的原因,自己不能顺利正确的完成的题目才是自己巩固练习的重点,自己很容易正确完成的题目看看就可以了,重复的也可以不看。重点攻克的应该是自己历次做错的题目,这些才反复学习的重点。此次做错的题目可以做为第二级错题,打上两个(2)测:选择适合自己水平的同步测试试卷,在学习完相应的内容后,自己找时好。完成后要对照标准答案进行认真的自我的批改,找出失误的原因,采取响应的解决办法,需要看书的还要认真看书,需要死记的内容就应该准确的记忆,理解不透的要深刻理解,题目太难的做不出来的,可以在标准答案的提示下,反复做做,直到彻底弄懂为止,试卷出现的任何失误,都应该搞清楚来龙去脉。次此(3)补:针对自己检查和学校作业、检测中出现的失误,属于自己不懂和不会造成的要集中到一个本子上,并认真订正,还要写出失误的原因,提示自己在以后的学习中不要出现类似的错误。善于发现自己的不错,并能够及时弥补的人,才(4)结:没有总结就没有提高,对于自己收集好的错误题目,光订正了还不够,还要分析原因,进行总结和提高。对于在错题中暴露出来的属于知识不清的,要分类进行总结,内容不多的就可以写在相应的题目后面,如果内容太多,书本上有的就可以标出页码,课外资料上的,自己没有的可以复印。要善于总结规律性(1)看:看课本上的知识要点、自

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论