高二下学期期末数学试卷_第1页
高二下学期期末数学试卷_第2页
高二下学期期末数学试卷_第3页
高二下学期期末数学试卷_第4页
高二下学期期末数学试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本文格式为Word版,下载可任意编辑——高二下学期期末数学试卷高二下学期期末数学试卷

一.选择题(共12小题,每题5分,共60分)

1.正方体ABCD?A1B1C1D1中,二面角D1?AC?D的正切值为()

2A.B.2C.2D.2.

f(x)?sin(2x?2.已知

??2?f/()?f/()?3,则33()

)11A.2B.?1C.2D..

?2(x?1,2?x),则条件“x?2〞是条件“a//b〞成立的()(3,?2)3.已知向量a=,b=

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件.

A(?,?2)B(,2)12、4两点,则?的()

??4.函数f(x)?2sin(?x??)(??0)的图象经过

A.最大值为3B.最小值为3C.最大值为6D.最小值为6.

5.圆C:x?y?8上有两个相异的点到直线y?x?5的距离为都为d,则d的取值范围是()

221919292292(,)[,](,)[,]2D.22.A.22B.22C.26.春节期间,某单位要安排3位行政领导从初一至初六值班,每天安排人,每人值班两天,则共有多少种安排方案?()

A.90B.120C.150D.15.

7.正三棱锥P?ABC中,PA?3,AB?2,则PA与平面PBC所成角的余弦值为()

236722A.9B.12C.12D.4.

8、从4名男生和3名女生中选出4人参与某个座谈会,若这4人中必需既有男生又有女生,则

不同的选法共有()

A.140种B.120种C.35种D.34种

10、某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不一致的牌照

号码共有()

?C?A.

1226A410个

AAB.

226410个C.

?C?1012264个

24A10D.26个

?x1??2?3?x?的展开式中的常数项是()11、在?A7B?7C28D?28

12.函数f(x)?|x?2|?1?mx的图象总在x轴的上方,则实数m的取值范围是()

81111[?1,)(?1,)(?1,][?1,]2B.2C.2D.2.A.

二、填空题:

3213、如下图的是函数f(x)?x?bx?cx?d的大致图象,22x?x12则等于____.

14、用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是____.(用数字作答)。

f(x)?15、设

12x?2,类比课本中用倒序相加法推导等差数列前n项和公式,可求得

f(?5)?f(?4)?????f(0)?????f(5)?f(6)的值是____.

11,f(x)?x?ax?2x?5316、若函数在区间(2)上既不是单调递增函数,

32P也不

是单调递减函数,则实数a的取值范围是____.

三、解答题:17.(本小题总分值8分)

DACB已知函数,当x?1时,有极大值3;

(1)求a,b的值;(2)求函数y的微小值.

18.(本小题总分值8分)

如图,在四棱锥P?ABCD中,PA?平面ABCD,

0PA?AB?BC?2,?DAC??ABC?90,AD?2.

(Ⅰ)证明:AD?PC;

(Ⅱ)求PD与平面PBC所成角的大小.

19.(本小题总分值10分)数列

{an}an?1?3an?2n?6bn?an?2n?3(n?N*)a??21中,,,.

(Ⅰ)证明:数列

{bn}是等比数列,并求

an;

an}Sb(Ⅱ)求数列n的前n项和n.

{

2sn??a1??sn?1?2(n?2)?a?3,其前n项和sn满足20.数列n中,,

(1)计算(2)猜想

21、(本小题12分)设函数f?x???1?x??2ln?1?x?.

21s2,s3,s4;

sn的表达式并用数学归纳法证明。

(1)求f?x?的单调区间;

?1?x???1,e?1??e?时,(注:e是自然对数的底数)不等式f?x??m恒成立,(2)若当

求实数[m的取值范围;

2??fx?x?x?a在区间?0,2?上的根的个数.x(3)试探讨关于的方程

参考答案

一.选择题

题号答案12AC34AB567CAC89DD10AA1112A二.填空题13.8/314.32153216.(5/4,5/2)三.解答题

''2y|?3a?2b?0,y|x?1?a?b?3,y?3ax?2bx,17.解:(解:解:(1)当x?1时,x?1

?3a?2b?0,a??6,b?9?a?b?3即?………………5分

32'2'y??6x?9x,y??18x?18xy(2),令?0,得x?0,或x?1

?y微小值?y|x?0?0

………………10分

19.证明:(Ⅰ)由PA?平面ABCD知AC为PC在平面ABCD的射影,

由?DAC?90知,AD?AC

故AD?PC(三垂线定理)………5分解:(Ⅱ)建立如下图空间直角坐标系A?xyz由已知可得PD?(?1,1,?2)

??n?BC1?0?n?(1,0,1)??n?PB?0设平面PBC的法向量为,由?………6分

0PzDACyBxcos?n,PD??PD?n|PD||n|??则

32

?则PD与平面PBC所成的角为3.………10分

bn?1an?1?2n?1?33an?2n?2m?1?93(an?2n?3)????3bnan?2n?3an?2n?3an?2n?320.解:(Ⅰ)………3分

又b1?3,知{bn}是以3为首项、3为公比的等比数列………4分?bn?3n,即

an?2n?3?3n

?an?3n?2n?3(n?N*).………6分an3n?2n?32n1n?1??1?()?()nb333(Ⅱ)由(Ⅰ)知n221[1?()n]1?()naaa33Sn?1?2?????n?n?3?21b1b2bn1?1?33故

2317?n?2?()n??()n?3232.………10分

20.(本小题10分)

345解:(1)S2??,S3??,S4??456.………4分

……………10分

2??fx?x?x?a,即x?1?2ln?1?x??a.记g?x??x?1?2ln?1?x?,则(3)方程

g??x??1?2x?1?1?xx?1.由g??x??0得x?1;由g??x??0得?1?x?1.

所以g?x?在?0,1?上递减;在?1,2?上递增.

而g?0??1,g?1??2?2ln2,g?2??3?2ln3,?g?0??g?2??g?1?所以,当a?1时,方程无解;

当3?2ln3?a?1时,方程有一个解当2?2ln2?a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论