版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
物理化学第六章唯象动力学反应速率理论2023/4/76.1
化学动力学的基本概念第6章化学动力学6.2
具有简单级数反应的特点6.5
反应速率理论简介6.3
温度对反应速率的影响6.4
几种典型的复杂反应6.8
光化学反应6.7
催化反应动力学6.6
溶液中的反应动力学简介2023/4/7引言化学热力学只能预测反应的可能性,但无法预料反应能否发生?反应的速率如何?反应的机理如何?2023/4/7引言反应需高温、高压及催化剂点火,加温或催化剂反应条件化学动力学主要研究内容为:研究化学反应的速率研究反应的机理研究温度、压力等外界因素对反应速率的影响。2023/4/7引言1、化学法用化学分析法测定各时间下系统中各物质的浓度,按速率表示式计算得到反应速率。2、物理方法用各种物理性质测定方法(旋光、折射率、电导率、电动势、粘度等)或现代谱仪(IR、UV-VIS、ESR、NMR、ESCA等)监测与浓度有定量关系的物理量的变化,从而求得浓度变化。物理方法有可能做原位反应。研究方法:2023/4/7引言化学动力学作为一门独立的学科,其建立与发展始于十九世纪后半叶,其间经历了三个主要阶段:⑴十九世纪后半叶到二十世纪初的宏观动力学阶段。该阶段主要是质量作用定律的确立和Arrhenius经验定律及活化概念的提出。2023/4/7引言⑶二十世纪五十年代以后开创了分子反应动态学的研究阶段。这一阶段最重要的特点是研究方法和技术手段的创新,特别是随着分子束技术和激光技术在研究中的应用而开创了分子反应动力学研究新领域。化学动力学的研究主要是以实验的方法进行,所以本章重点在于唯象动力学部分,即浓度、温度、压力、催化剂等对反应速率的影响,同时简单介绍较成熟的几种反应速率理论。2023/4/76.1化学反应速率及速率方程6.1.1反应速率6.1.2反应速率的测定6.1.3基元反应6.1.5反应级数和速率系数6.1.4质量作用定律2023/4/76.1.1反应速率对某化学反应,计量方程写为:已知定义:称作转化速率(rateofconversion)2023/4/76.1.1反应速率一个反应的整体速率r与各物质的反应速率rA、rB、rY和rZ的数值可能不同,rA、rB、rY和rZ各自数值也可能不同,显然它们满足下面的关系对于气相反应,有时也用各物质的分压随时间的变化率表示反应速率。2023/4/76.1.1反应速率
例如:因为:所以:作为理想气体反应2023/4/76.1.1反应速率几点讨论:1、反应速率为标量,通常取正值2、反应速率的大小与化学反应方程式有关3、反应速率是时间的函数,反应时间不同,速率大小不同,通常r代表的是瞬时速率。2023/4/76.1.2反应速率的实验测定浓度c时间反应物[R]反应物和产物的浓度随时间的变化产物[P]2023/4/76.1.3基元反应(elementaryreaction)定义:由反应物分子在碰撞中一步转化为生成物分子的反应称为基元反应,否则就是非基元反应。基元反应也称为基元步骤。例如反应:包含四个基元反应:2023/4/76.1.3基元反应(elementaryreaction)基元反应是分子级别的反应,相当于组成化学反应的基本单元。通常将只含一个基元反应的化学反应称为简单反应,由两个或两个以上基元反应组成的化学反应称为复合反应,也称为总包反应或复杂反应。如上面HCl(g)生成反应即是复合反应,它包含了四个基元反应。2023/4/76.1.4质量作用定律(lawofmassaction)基元反应中反应物的粒子(可以是分子、原子、离子等)数目之和称为基元反应的反应分子数。1、反应分子数反应分子数只可能是简单的正整数1,2或3。至今未发现有四分子及以上的反应(为什么)。2023/4/76.1.4质量作用定律(lawofmassaction)速率方程又称动力学方程。它表明了反应速率与浓度等参数之间的关系或浓度等参数与时间的关系。速率方程可表示为微分式或积分式。微分式:积分式:2、速率方程2023/4/76.1.4质量作用定律(lawofmassaction)基元反应的反应速率与各反应物浓度的幂指数成正比,其中幂指数是基元反应方程中各反应物计量系数的绝对值,这一规律称为质量作用定律。根据质量作用定律可写出基元反应的速率方程。3、质量作用定律2023/4/76.1.5反应级数与反应速率系数反应级数反应的速率常数准级数反应不同物质反应速率常数k的关系质量作用定律对复合反应的应用2023/4/76.1.5反应级数与反应速率系数
反应级数可以是正数、负数、整数、分数或零,有的反应无法用简单的数字来表示级数。
反应级数一般是由实验测定的。反应:速率方程:则式中α和β等指数项分别称作该反应对反应物A和B等的反应级数;α+β+…=n,n
称作该反应的总级数。1、反应级数(orderofreaction)2023/4/76.1.5反应级数与反应速率系数若某一物质的浓度远远大于其他反应物的浓度,或其浓度在反应中不变,可并入速率常数项,这时在速率方程中,反应总级数可相应下降,下降后的级数称为准级数反应。例如:3、准级数反应(pseudoorderreaction)2023/4/76.1.5反应级数与反应速率系数对任意反应:所以:4、不同物质反应速率常数k的关系2023/4/76.1.5反应级数与反应速率系数反应:速率方程:5、质量作用定律对复合反应的应用2023/4/76.2具有简单级数反应的特点一级反应 二级反应*三级反应和零级反应n级反应反应级数的测定及速率方程的建立速率方程具有速率方程具有简单幂函数形式,且α、β等取值为0,1,2,3等的反应,称为具有简单级数的化学反应。
2023/4/76.2.1一级反应(firstorderreaction)定义:反应速率只与反应物浓度的一次方成正比的反应称为一级反应。如反应2023/4/76.2.1一级反应(firstorderreaction)反应:或1、微分式(1)一级反应的速率方程a为反应物A的起始浓度。2023/4/76.2.1一级反应(firstorderreaction)不定积分式2、积分式或或定积分式2023/4/76.2.1一级反应(firstorderreaction)(2)一级反应的特点1.速率常数k的单位为:[时间]-12.半衰期(half-lifetime)是一个与反应物起始浓度无关的常数
:
。3.与t呈线性关系。2023/4/76.2.1一级反应(firstorderreaction)4.将相关实验数据c~t代入公式
计算所得各k1值应为常数。
[例题1]:某金属钚的同位素进行β放射,14d后,同位素活性下降了6.85%。试求该同位素的:(1)蜕变常数;(2)半衰期;(3)分解掉90%所需时间。
2023/4/76.2.1一级反应(firstorderreaction)解:(2)2023/4/76.2.2二级反应(secondorderreaction)常见的二级反应有乙烯、丙烯的二聚作用,乙酸乙酯的皂化,碘化氢的热分解反应等。有两类:(取基元反应)2023/4/76.2.2二级反应(secondorderreaction)把此类型称作标准型二级反应,x为反应物浓度减少量1、速率方程(1)微分方程式2023/4/76.2.2二级反应(secondorderreaction)与标准型相同2023/4/76.2.2二级反应(secondorderreaction)不定积分式:定积分式:标准型(2)积分式或2023/4/76.2.2二级反应(secondorderreaction)不定积分式:定积分式:非标准型当a=b,,与标准型相同。当b≠a
2023/4/76.2.2二级反应(secondorderreaction)当
反应转化为一级,按一级方程计算。2023/4/76.2.2二级反应(secondorderreaction)③与t成线性关系。①速率常数k的单位为[浓度]-1
[时间]-1
②半衰期与起始物浓度成反比:K=斜率④将x-t数据代入公式
计算得常数。
2、二级反应的特点2023/4/76.2.2二级反应(secondorderreaction)[例题2]乙醛的气相热分解反应为二级反应
CH3CHO→CH4+CO在定容下反应时系统压力将增加。在518℃时测量反应过程中不同的时间和定容器皿的压力,得如表的数据,试求此反应的速率常数。
t/s0732424808401440p/kPa48.455.666.2574.2580.986.252023/4/76.2.2二级反应(secondorderreaction)解:设起始压力为p0,则pt=p0-
px(pt为任意时刻乙醛的分压,px为乙醛的压力减小值),则任意时刻体系的总压为:p=pt+2px=p0+p
x
则px=p-p02023/4/76.2.2二级反应(secondorderreaction)t/s0732424808401440p/kPa48.455.666.2574.2580.986.25k2×105/kpa-1.s-1_4.964.984.945.035.15计算结果如下表2023/4/76.2.2二级反应(secondorderreaction)[例题3]
在15.8℃时,乙酸乙脂在水溶液中的皂化反应为:
CH3COOC2H5+OH-→CH3COO-+C2H5OH
该反应对酯及碱各为一级,总反应为二级。酯和碱的起始浓度a和b分别为0.01211及0.02578mol·dm-3。在不同时刻t取样用标准酸滴定其中碱的浓度(b-x),所得数据如下:2023/4/76.2.2二级反应(secondorderreaction)t/s224377629816(b-x)/mol.dm-30.022560.021010.019210.01821(1)求速率常数;(2)求反应进行一小时后所剩酯的浓度;(3)酯被消耗掉一半所需时间。解:经计算得相关数据如下表:2023/4/76.2.2二级反应(secondorderreaction)T/s224377629816(b-x)/mol.dm-30.022560.021010.019210.01821(a-x)/mol.dm-30.008890.007340.005540.00454ln(a-x)/(b-x)-0.9313-1.0517-1.2434-1.3890(1)根据公式
以对时间t作图得
:2023/4/76.2.2二级反应(secondorderreaction)2023/4/76.2.2二级反应(secondorderreaction)直线斜率为:-7.71×10-4
s-1(2)t=3600s,k=5.64×10-2mol-1·dm3.
s-1,代入计算式求得:x=0.01171mol·dm-32023/4/71、速率方程的微分式:
2、速率方程的定积分式6.2.3n级反应(nthorderreaction)通式2023/4/76.2.3n级反应(nthorderreaction)通式(3)半衰期(1)速率常数k的单位为[浓度]1-n[时间]-1
(2)3、n
级反应的特点与时间t成线性关系
。2023/4/76.2.4反应级数的测定及速率方程的建立(1)积分法确定反应级数(适用于具有简单级数的反应)条件:实验测得一系列cA~t或x~t的动力学数据。
1、尝试法
将各组cA,t值代入具有简单级数反应的速率定积分式中,计算k值。若得k值基本为常数,则反应为所代入方程的级数。若求得k不为常数,则需再进行假设。如一级反应2023/4/76.2.4反应级数的测定及速率方程的建立
2.作图法:
如果所得图为一直线,则反应为相应的级数。将各组cA,t值代入各级反应积分式2023/4/76.2.4反应级数的测定及速率方程的建立
3、半衰期法方法1:根据n级反应的半衰期通式,取两个不同起始浓度a,a’作实验,分别测定半衰期为t1/2和t’1/22023/4/76.2.4反应级数的测定及速率方程的建立方法2:以lnt1/2~lna作图从直线斜率求n值。从多个实验数据用作图法求出的n值更加准确。斜率=1-nn=1-斜率说明:半衰期法可由一次实验数据进行计算2023/4/76.2.4反应级数的测定及速率方程的建立(2)微分法确定反应级数或由公式计算2023/4/76.2.4反应级数的测定及速率方程的建立
(3)变更浓度比例法求算分级数
1.使[A]>>[B]先确定β值2.使[B]>>[A]再确定α值当反应物不止一种时,各反应物的分级数求算也很重要。分级数的求算采用变更浓度比例法,该法也称作孤立法。或保持一种反应物浓度不变,而改变另一种反应物的浓度,从而求出另一种反应物的份级数。2023/4/76.2.4反应级数的测定及速率方程的建立[例题4]:
乙酸乙脂在碱性溶液的反应如下:
CH3COOC2H5+OH-→CH3COO-+C2H5OH
在298K下进行。两种反应物起始浓度均为0.064mol.dm-3。在不同时刻取样25cm3,立即想样品中加入25.00cm30.064mol.dm-3盐酸,以终止反应。多余的酸用0.1000mol.dm-3的NaOH溶液滴定,所用的碱液体积记录如下表:2023/4/76.2.4反应级数的测定及速率方程的建立t/min0.005.0015.0025.0035.0055.00∞V(OH-)0.005.769.8711.6812.6913.6916.00
cm3(1)用尝试法求反应级数和速率常数;(2)用作图法求反应级数和速率常数。解:设t时刻反应掉的反应物浓度为x。根据题意可得:x=0.1000mol·dm-3×V(OH-)/25.00cm32023/4/76.2.4反应级数的测定及速率方程的建立(1)尝试法经计算得下表数据cm3t/min0.005.0015.0025.0035.0055.00V(OH-)0.005.769.8711.6812.6913.69(a-x)0.0640.0410.0250.0170.0410.009
mol.dm-3将第二和第六组数据代入一级公式计算得:
k2=8.90×10-2min-1,k6=3.57×10-2min-12023/4/76.2.4反应级数的测定及速率方程的建立k2≠k6,不是一级反应。
将第二和第六组数据代入二级公式计算得:
k2=1.75mol-1.dm3.min-1,k6=1.74mol-1.dm3.min-1,两个k值很接近,可以确定该反应为二级反应。
再代入3、4、5三组数据计算得k3、k4、k5(略)
2023/4/76.2.4反应级数的测定及速率方程的建立(2)作图法经计算得相关数据如下表:t/min0.005.0015.0025.0035.0055.00ln(a-x)-2.7489–3.1942-3.6889-4.0745-4.2638-4.710515.624.440.058.871.4111.1
分别以ln(a-x)、
和对t作图
2023/4/76.2.4反应级数的测定及速率方程的建立由图看出,该反应为二级反应(右图)
k=b=1.73mol-1.dm3.min-1
分级数确定见P229【例题8-5】2023/4/76.3
温度对反应速率的影响温度对反应速率影响的类型阿仑尼乌斯公式化学反应的活化能2023/4/76.3.1
温度影响反应速率的类型通常有五种类型(纵坐标为反应速率):(1)反应速率随温度的升高而逐渐加快,它们之间呈指数关系,这类反应最为常见。(2)开始时温度影响不大,到达一定极限时,反应以爆炸的形式极快的进行。rTrTrTrTrT(1)(2)(3)(4)(5)2023/4/76.3.1
温度影响反应速率的类型(3)在温度不太高时,速率随温度的升高而加快,到达一定的温度,速率反而下降。如多相催化反应和酶催化反应。(4)速率在随温度升到某一高度时下降,再升高温度,速率又迅速增加,如碳氢物的。(5)温度升高,速率反而下降。这种类型很少,如一氧化氮氧化成二氧化氮。rTrTrTrTrT(1)(2)(3)(4)(5)2023/4/76.3.2阿仑尼乌斯方程(1)指数式:A—指前因子;—称为阿仑尼乌斯活化能;A和都是与温度无关的常数。(2)微分式:该式也称为活化能的定义式。2023/4/76.3.2阿仑尼乌斯方程(4)定积分式:描述了两个温度下速率常熟的定量关系。(3)不定积分式:描述了速率常数与1/T之间的线性关系。2023/4/76.3.3化学反应的活化能1、基元反应的活化能
基元反应的活化能定义:活化分子的平均能量与反应物分子平均能量之差值,称为活化能。AP正、逆反应的活化能Ea和Ea’如右图所示。
ΔrUm=ΔEa=E+-E-
2023/4/76.3.3化学反应的活化能2、实验活化能根据阿伦尼乌斯微分式这里Ea既是阿伦尼乌斯活化能,也称为实验活化能。2023/4/76.3.4化学反应的活化能对于复杂反应,活化能是组成复杂反应的各基元反应活化能的数学组合。表观活化能也称为总包反应活化能。组合的方式决定于基元反应的速率常数与表观速率常数之间的关系,这个关系从反应机理推导而得。例如:2023/4/76.3.4化学反应的活化能3、活化能与温度的关系
人们根据反应速率理论的研究,对阿累尼乌斯公式提出了三参量公式:可得温度较低时,为常数。2023/4/76.3.4化学反应的活化能以lnk对1/T作图,直线斜率为(1)活化能越大,温度对反应速率的影响就越大;4、讨论根据阿氏公式2023/4/76.3.4化学反应的活化能(2)对同一反应,低温下,k随T的变化比高温下大;2023/4/76.3.4化学反应的活化能作图法以lnk对1/T作图,从直线斜率算出值。5、活化能的求算
2023/4/76.3.4化学反应的活化能计算法:测定两个温度下的k值,代入计算值2023/4/76.3.4化学反应的活化能由活化能的定义式计算知道k与温度的关系式,即可求出Ea值。2023/4/76.3.4化学反应的活化能已知反应在298K时,速率常数k为3.46×10-5,在318K时k为49.8×10-5,试求:(1)该反应的活化能Ea;(2)338K时反应的速率常数k;(3)该反应的速率常数与温度的指数关系式。
[例题5]2023/4/76.3.4化学反应的活化能解:(1)由公式知,
(2)2023/4/76.3.4化学反应的活化能(3)说明:当实验数据较多时,用计算法求活化能,须一一对应求出多个E值,最后给出平均值。2023/4/76.4
几种典型的复杂反应由两个或两个以上基元反应组成的反应称为复杂反应。复杂反应种类很多,下面重点介绍对峙反应、平行反应、连续反应和链反应。2023/4/76.4.1对峙反应(OpposingReaction)在正、逆两个方向同时进行的反应称为对峙反应,俗称可逆反应。可以是基元反应,也可以是非基元反应。例如:2023/4/76.4.1对峙反应(OpposingReaction)考虑1-1级对峙反应
t=0
a
0t=t
a-x
xt=te
a-xe
xe1、微分式一、对峙反应的速率方程2023/4/76.4.1对峙反应(OpposingReaction)因:2、积分式2023/4/76.4.1对峙反应(OpposingReaction)测定了t时刻的产物浓度x,已知a和xe,就可分别求出k1和k-1。所以又2023/4/76.4.1对峙反应(OpposingReaction)1.净速率等于正、逆反应速率之差值2.达到平衡时,反应净速率等于零3.正、逆速率常数之比等于平衡常数K=k+/k-4.在c~t图上,达到平衡后,反应物和产物的浓度不再随时间而改变二、对峙反应的特点2023/4/76.4.1对峙反应(OpposingReaction)三、对峙反应的控制考察正向放热的对峙反应:显然①若温度较低,Kc较大,cB/Kc对r的影响较小,r主要受k+
影响。2023/4/76.4.1对峙反应(OpposingReaction)②若温度较高,Kc较小,r受cB/Kc值的影响大,这时温度升高,r反而下降。最适宜温度的确定:作r-T图如图:图Tm即是最大净反应速率时最佳温度。2023/4/76.4.2平行反应(ParallelorSideReaction)相同反应物同时进行若干个不同的反应称为平行反应。这种情况在有机反应中较多,通常将生成期望产物的一个反应称为主反应,其余为副反应。总的反应速率等于所有平行反应速率之和。ABC(k1)(k2)2023/4/76.4.2平行反应(ParallelorSideReaction)一、速率方程ABC(k1)(k2)即:定积分得:2023/4/76.4.2平行反应(ParallelorSideReaction)积分得:2023/4/76.4.2平行反应(ParallelorSideReaction)1.平行反应的总速率等于各平行反应速率之和2.当各产物的起始浓度为零时,在任一瞬间,各产物浓度之比等于速率常数之比,若各平行反应的级数不同,则无此特点。二、平行反应的特点2023/4/76.4.2平行反应(ParallelorSideReaction)3.用合适的催化剂可以改变某一反应的速率,从而提高主反应产物的产量。4.用改变温度的办法,可以改变产物的相对含量。活化能高的反应,速率常数随温度的变化率也大。2023/4/76.4.2平行反应(ParallelorSideReaction)(1)如果,升高温度,也升高,对反应1有利;(2)如果,升高温度,下降,对反应2有利。ABC反应2,反应1,2023/4/76.4.3连续反应(ConsecutiveReaction)有很多化学反应是经过连续几步才完成的,前一步生成物中的一部分或全部作为下一步反应的部分或全部反应物,依次连续进行,这种反应称为连续反应或连串反应。连续反应的数学处理极为复杂,我们只考虑最简单的由两个单向一级反应组成的连续反应。2023/4/76.4.3连续反应(ConsecutiveReaction)t=0 a0 0t=t
xy zx+y+z=a特点:1、微分式一、连续反应的速率方程2023/4/76.4.3连续反应(ConsecutiveReaction)2023/4/76.4.3连续反应(ConsecutiveReaction)2023/4/76.4.3连续反应(ConsecutiveReaction)
因中间产物的浓度有一个先增后减的过程,中间会出现一个极大值。极大值的位置和高度决定于两个速率常数的相对大小,如下图所示:二、连续反应的c~t关系及最大浓度2023/4/76.4.3连续反应(ConsecutiveReaction)在中间产物浓度y出现极大值时,它的一阶导数为零。2023/4/76.4.3连续反应(ConsecutiveReaction)问题:在工业生产中,通过控制反应时间,可以得到较大浓度的中间产物B,但是反应时间则控制在稍小于tm,为什么?
2023/4/76.4.4复杂反应速率方程的近似处理方法
在化学动力学研究中,直接得到复合反应的速率方程是很困难的,通常采用近似处理方法。下面介绍几种常用的方法。1、选取速控步骤法对于一系列连续反应组成的总反应,若其中某一步速率最慢,则该步骤即为反应的速控步骤,在进行总反应动力学处理时,即可根据有速控步骤的得点对速率方程进行简化处理。2023/4/76.4.4复杂反应速率方程的近似处理方法如前面的连续反应,(1)当k1>>k2,第二步为速控步(2)当k2>>k1,第一步为速控步2023/4/76.4.4复杂反应速率方程的近似处理方法假定反应进行一段时间后,系统基本上处于稳态,这时,各中间产物的浓度可认为保持不变,即:2、稳态近似(SteadyStateApproximation)由此导出速率方程式。一般活泼的中间产物可以采用稳态近似,如自由基反应及高分子聚合反应2023/4/76.4.4复杂反应速率方程的近似处理方法例如反应A+B=D,设反应机理为所以表观速率系数为:2023/4/76.4.4复杂反应速率方程的近似处理方法3、平衡态近似总包反应:反应机理:速率方程:2023/4/76.4.4复杂反应速率方程的近似处理方法例如HI生成反应:k22023/4/76.4.4复杂反应速率方程的近似处理方法由反应(1)得:总速率:解得:2023/4/76.4.4复杂反应速率方程的近似处理方法2023/4/76.4.4复杂反应速率方程的近似处理方法【例题6】乙醛气相热分解反应机理为试用稳态法推导速率方程式。2023/4/76.4.4复杂反应速率方程的近似处理方法解:(1)(3)(2)按稳态法(3)代入(2)得2023/4/76.4.4复杂反应速率方程的近似处理方法式中为该反应的表观速率常数。代入(1)式得2023/4/76.4.5
链反应(chainreaction)直链反应支链反应爆炸极限2023/4/76.4.5
链反应(chainreaction)一旦由外因(例如加热)诱发产生高活性的自由基(或自由原子等),反应便自动地连续不断地进行下去,这类反应称为链反应。在链反应中,开始诱发产生的自由基虽然在反应中被消耗,但反应本身能够不断再生自由基,就像链条一样,一环扣一环地延续下去。2023/4/76.4.5
链反应(chainreaction)链反应分为两种类型,即直连链反应和支链链反应,(a)直链反应(b)支链反应这里主要讨论直链反应,以HCl生成反应为例。2023/4/76.4.5
链反应(chainreaction)实测速率方程推测反应机理为:链引发链终止链传递总包反应2023/4/76.4.5
链反应(chainreaction)(用稳态法推导反应速率方程式)2023/4/76.4.5
链反应(chainreaction)与实验测定的速率方程一致。2023/4/76.4.5
链反应(chainreaction)2023/4/76.4.5
链反应(chainreaction)
支链反应同样有链引发、链传递、链终止等三个过程,但所产生的活性质点一部分按直链方式传递下去,还有一部分每消耗一个活性质点,同时产生两个或两个以上的新活性质点,使反应像树枝状支链的形式迅速传递下去。因而反应速度会急剧加快,引起支链爆炸。
如果产生的活性质点过多,也可能自己相碰而失去活性,使反应终止。例如H2和O2反应生成水蒸气:支链反应与爆炸2023/4/76.4.5
链反应(chainreaction)2H2(g)+O2(g)→2H2O(g)(总反应)
反应看似简单,但反应机理很复杂,至今尚不十分清楚。但知道反应中有以下几个主要步骤和存在H、O、OH和HO2等活性物质。2023/4/76.4.5
链反应(chainreaction)直链传递链引发支链传递链终止(气相)链终止(器壁上)2023/4/76.4.5
链反应(chainreaction)1.压力低于ab线,不爆炸。2.随着压力的升高,活性物质与反应分子碰撞次数增加,使支链迅速增加,如反应(4)和(5),就引发支链爆炸,这处于ab和bc之间。爆炸极限反应(4)和(5)有可能引发支链爆炸,但能否爆炸还取决于温度和压力。因活性物质在到达器壁前有可能不发生碰撞,而在器壁上化合生成稳定分子,如反应(9),ab称为爆炸下限。2023/4/76.4.5
链反应(chainreaction)2023/4/76.4.5
链反应(chainreaction)3.压力进一步上升,粒子浓度很高,有可能发生三分子碰撞而使活性物质销毁,如反应(6)-(8),也不发生爆炸,bc称为爆炸上限。4.压力继续升高至c以上,反应速率快,放热多,发生热爆炸。5.温度低于730K,无论压力如何变化,都不会爆炸。2023/4/76.5.1双分子反应碰撞理论6.5
反应速率理论简介6.5.2过渡态理论2023/4/76.5.1双分子反应碰撞理论有效碰撞直径和碰撞截面双分子反应碰撞理论速率方程式双分子反应碰撞理论的基本假设碰撞理论的活化能2023/4/76.5.1双分子反应碰撞理论1、基元反应A+B==C+D进行时,首先A和B分子必须相互碰撞。2、只有那些能量较高的分子(活化分子)碰撞才能生成产物。一、双分子反应碰撞理论的基本假设2023/4/76.5.1双分子反应碰撞理论运动着的A分子和B分子,两者质心的投影落在直径为的圆截面之内,都有可能发生碰撞。称为有效碰撞直径AB分子间的碰撞和有效直径虚线圆的面积称为碰撞截面(collisioncrosssection)。数值上等于。二、有效碰撞直径和碰撞截面2023/4/76.5.1双分子反应碰撞理论1、A和B分子互碰频率碰撞时相对速度:三、碰撞频率2023/4/76.5.1双分子反应碰撞理论互碰频率为:令:得:或:2023/4/76.5.1双分子反应碰撞理论相对速度为:每次碰撞需要两个A分子,在碰撞频率中除以2,所以两个A分子互碰频率为:2、只有A分子的碰撞频率(书上写成16,有错)2023/4/76.5.1双分子反应碰撞理论
分子互碰并不是每次都发生反应,只有相对平动能在连心线上的分量大于阈能的碰撞才是有效的,所以绝大部分的碰撞是无效的。(1)有效碰撞分数q—有效碰撞分数四、双分子反应碰撞理论速率方程式2023/4/76.5.1双分子反应碰撞理论—反应阈能,又称为反应临界能。两个分子相撞,相对动能在连心线上的分量必须大于临界值Ec,这种碰撞才有可能引发化学反应。2023/4/76.5.1双分子反应碰撞理论(2)速率系数k比较得:2023/4/76.5.1双分子反应碰撞理论对于或2023/4/76.5.1双分子反应碰撞理论(3)、碰撞理论活化能2023/4/76.5.1双分子反应碰撞理论(4)、概率因子(probabilityfactor)实践表明,由前述理论计算得到的速率系数k及A与从实验测定的值相比较,对于简单的气相反应比较吻合,但对于复杂反应或溶液中的反应往往差别很大。误差主要原因是硬球碰撞模型过于简单化,没有考虑分子的结构与性质。2023/4/76.5.1双分子反应碰撞理论
(1)方位效应——活化分子只有在某一方向相撞才能有效反应;
(2)能量效应——分子从相撞到反应中间有一个能量传递过程,若这时又与另外的分子相撞而失去能量,则反应仍不会发生;
(3)位阻效应——有的分子在能引发反应的化学键附近有较大的原子团,由于空间位阻效应,减少了这个键与其它分子相撞的机会等等。主要原因是:2023/4/76.5.1双分子反应碰撞理论
概率因子又称为空间因子或方位因子。引入概率因子校正理论计算值与实验值的偏差:P=A(实验)/A(理论)解决办法:2023/4/76.5.1双分子反应碰撞理论优点:1、碰撞理论为我们描述了一幅虽然粗糙但十分明确的反应图像,在反应速率理论的发展中起了很大作用。2、对阿仑尼乌斯公式中的指数项、指前因子和阈能都提出了较明确的物理意义。3、解释了一部分实验事实,理论所计算的速率系数k值与较简单的反应的实验值相符。缺点:模型过于简单,要引入概率因子,且概率因子的值很难具体计算。阈能还必须从实验活化能求得,所以碰撞理论还是半经验的。碰撞理论的优缺点:2023/4/76.5.2
过渡态理论(transitionstatetheory)过渡态理论的基本假设势能面过度态理论速率方程三种速率方程的比较2023/4/76.5.2
过渡态理论
过渡态理论是1935年由艾林(Eyring)和波兰尼(Polany)等人在统计热力学和量子力学的基础上提出来的。他们认为由反应物分子变成生成物分子,中间一定要经过一个过渡态,而形成过渡态必须吸收一定的活化能。该过渡态就称为活化络合物,所以过渡态理论又称为活化络合物理论。用该理论,只要知道分子的振动频率、质量、核间距等基本物性,就能计算反应的速率系数,所以又称为绝对反应速率理论(absoluteratetheory)。2023/4/76.5.2
过渡态理论(1)对于反应A+BC=AB+C,先生成中间活化络合物[ABC]≠,以X≠表示。X≠一方面可生成反应物(快速平衡),另一方面进一步反应生成产物:(2)反应速率等于第二步的速率,活化络合物中B┄C振动自由度很松动,其震动频率很小,每一次振动均可导致产物的生成,,速率方程式为:一、过渡态理论基本假设2023/4/76.5.2
过渡态理论因第一步快速平衡,所以:由统计热力学方法可得:
【称为艾林(Eyring)方程】相当于分离出沿反应坐标不对称伸缩振动配分函数后的平衡常数)2023/4/76.5.2
过渡态理论1、势能面
令∠ABC=180o,
EP=EP(rAB,rBC)。势能随着核间距rAB和rBC的变化构成高低不平的曲面,称为势能面.A+BC[A…B…C]AB+C二、过渡态理论势能面2023/4/76.5.2
过渡态理论R点—反应物分子的基态T点—形成活化络合物的能态。P点—生成物分子的基态。
D点—完全离解为A,B,C原子时的势能;OEP一侧三原子间距小,排斥能大。2023/4/76.5.2
过渡态理论
势能面如马鞍,活化络合物所处的位置T点称为马鞍点。该点的势能与反应物和生成物所处的稳定态能量R点和P点相比是最高点,但与坐标原点一侧和D点的势能相比又是最低点。2、马鞍点(saddlepoint)2023/4/76.5.2
过渡态理论
图中曲线是相同势能的投影,称为等势能线,线上数字表示势能的相对值。
等势能线的密集度表示势能变化的陡度。3、势能面投影图2023/4/76.5.2
过渡态理论沿势能面上R-T-P路线剖面得到势能面的剖面图。横坐标代表反应进程,也称反应坐标。纵坐标代表势能。
从剖面图看出:由反应物A+BC到生成物走的是能量最低通道,但必须越过势能垒Eb。。
Eb是活化络合物与反应物最低势能之差,E0是两者零点能之间的差值。4、势能面剖面图和反应坐标
势能面剖面图反应坐标势能2023/4/76.5.2
过渡态理论5、过渡态理论活化能
势能面剖面图中的活化络合物势能与反应物的势能之差Eb是过渡态理论活化能,在数值上Eb
与活化络合物同反应物的振动零点能E0
相差不大,可用E0代替Eb
而不会带来大的误差。即:势能面剖面图反应坐标势能2023/4/76.5.2
过渡态理论1、速率方程的推导艾林方程写为:因为:
三、过度态理论的速率方程2023/4/76.5.2
过渡态理论式中——活化吉布斯函数——活化焓——活化熵2023/4/76.5.2
过渡态理论一般式:式中n为反应物分子数。2、活化焓与实验活化能的关系2023/4/76.5.2
过渡态理论2023/4/76.5.2
过渡态理论对气相反应:(设n为气相反应物分子数)对凝聚相反应:2023/4/76.5.2
过渡态理论1.形象地描绘了基元反应进展的过程;过渡态理论缺点:引进的平衡假设和速决步假设并不能符合所有的实验事实;对复杂的多原子反应,绘制势能面有困难,使理论的应用受到一定的限制。2.原则上可以从原子结构的光谱数据和势能面计算宏观反应的速率常数;过渡态理论优点:3.对阿仑尼乌斯的指前因子作了理论说明,认为它与反应的活化熵有关;4.形象地说明了反应为什么需要活化能以及反应遵循的能量最低原理。2023/4/76.5.2
过渡态理论阿氏公式:碰撞理论:反应:过渡态理论:四、三种速率系数公式的比较2023/4/76.5.2
过渡态理论活化熵的计算:显然:(气相反应)所以2023/4/76.5.2
过渡态理论【例题7】某顺式偶氮烷烃在乙醇溶液中不稳定,通过计量分解放出的N2气来计算其分解的速率常数k值,在不同温度下的实验数据如下:T/K248252256260264k×104/s-11.222.314.398.5014.3试计算该反应在298K时的实验活化能、活化焓、活化熵和活化吉布斯函数。解:该反应是一级反应。根据阿累尼乌斯经验公式知:
2023/4/76.5.2
过渡态理论计算各温度下的lnk并以lnk对1/T作图:
T/K248252256260264k×104/s-11.222.314.398.5015.8lnk-9.011-8.373-7.731-7.070-6.4501/T/K4.033.973.913.853.79(×103)直线斜率
A值的计算:
溶液反应,n=12023/4/76.5.2
过渡态理论2023/4/76.5.2
过渡态理论将各组实验数据代入计算得:
T/K248252256260264A/1014s-16.676.376.236.346.322023/4/76.5.2
过渡态理论2023/4/76.6溶液中进行反应原盐效应溶剂对反应速率的影响2023/4/76.6.1溶剂对反应速率的影响溶剂对反应速率的影响是十分复杂的,主要有:(1)溶剂介电常数的影响——介电常数大的溶剂会降低离子间的引力,不利于离子间的化合反应。(2)溶剂极性的影响——如果生成物的极性比反应物大,极性溶剂能加快反应速率,反之亦然。(3)溶剂化的影响——反应物分子与溶剂分子形成的化合物较稳定,会降低反应速率;若溶剂能使活化络合物的能量降低,从而降低了活化能,能使反应加快。2023/4/76.6.2笼效应一、笼效应
在溶液反应中,溶剂分子环绕在反应物分子周围,好像一个笼把反应物围在中间,使同一笼中的反应物分子进行多次碰撞,其碰撞频率并不低于气相反应中的碰撞频率,因而发生反应的机会也较多,这种现象称为笼效应。二、笼效应对反应速率的影响
对有效碰撞分数较小的反应影响不大;对自由基等活化能很小的反应,则笼效应会使这种反应速率变慢,此时分子的扩散速度起了速决步的作用。2023/4/76.6.2笼效应2023/4/76.6.2笼效应反应物分子处在某一个溶剂笼中,发生连续重复的碰撞,称为一次遭遇,直至反应物分子挤出溶剂笼,扩散到另一个溶剂笼中。在一次遭遇中,反应物分子有可能发生反应,也有可能不发生反应。每次遭遇在笼中停留的时间约为10-12~10-8s,进行约100~10000次碰撞,频率与气相反应近似。2023/4/76.6.3原盐效应稀溶液中,离子强度对反应速率的影响称为原盐效应。和分别为无电解质和有电解质时的速率系数。
2023/4/76.6.3原盐效应(1)>0,离子强度增大,k增大,正原盐效应。(2)<0,离子强度增大,k下降,负原盐效应。(3)=0,离子强度不影响k值,无原盐效应。2023/4/76.6.4扩散控制和活化控制
溶液中反应分为扩散控制和活化控制:当反应活化能很小时,反应速率很快,则A、B分子扩散到同一个溶剂笼子里过程则较慢,此时总速率由扩散速率控制;当反应活化能较大时,反应速率小,反应的活化过程上升到主要矛盾,此时总速率由活化过程控制。下面主要讨论扩散控制。2023/4/76.6.4扩散控制和活化控制物质扩散速度主要取决为:(1)溶液的黏度—黏度越大,扩散速度越小;(2)物质粒子的大小—粒子半径越大扩散速度越小;(3)粒子间相互作用—主要对离子型反应而言。经推导得扩散速率系数为:f是静电因子2023/4/76.7催化反应动力学
催化剂和催化作用均相催化反应
气-固相复相催化反应酶催化反应
2023/4/76.7.1催化剂和催化作用
(1)催化剂能改变化学反应的历程和反应的活化能,从而改变反应速率;
(2)一般来说,催化剂参与了化学反应,但在反应前后不改变其化学性质;
(3)催化剂可加快化学反应达平衡的速率,但不影响化学平衡;
(4)催化剂有特殊的选择性;
(5)有些反应的速率与催化剂的浓度成正比;
(6)催化剂会发生中毒现象;
(7)催化剂的构成有一定的要求。一、催化剂的基本特征2023/4/76.7.1催化剂和催化作用二、催化反应的类型
气相液相气、固相液、固相催化反应:均相催化:多相催化:2023/4/76.7.1催化剂和催化作用三、催化剂的活性中心
催化剂对反应起催化作用的是其活性中心,当活性中心被其它物质牢固地占据后,催化剂就失去了催化作用。例如用三苯磷氯铑催化乙烯加氢反应:CH2CH2+H2=CH3CH3催化原理如右图所示:Rh3+离子是该催化剂的活性中心。
3+dxzSP32023/4/7TiCl4-AlEt3体系催化下的Ziegler-Natta反应的可能过程nCH2=CH2
(CH2CH2)n6.7.1催化剂和催化作用2023/4/76.7.1催化剂和催化作用
H转移,16e烯烃加成,18e用Co(CO)3H作催化剂由丙烯醇制备丙醛的催化循环HOCH2CH=CH2
CH3CH2CHO2023/4/76.7.2均相催化反应
一、均相催化反应的特点
反应物和催化剂同处于一相;
接触充分,催化效率高;催化剂的浓度对反应速率有影响二、均相催化反应机理
S和R分别为反应物和产物,C为催化剂,X是不稳定的中间化合物。
2023/4/76.7.2均相催化反应按稳态法:显然,催化剂的浓度对反应速率有影响。
第二步的速率为总速率:
2023/4/76.7.3酶催化反应
酶催化反应与生命现象有密切关系,其主要特点有:1.高选择性
酶选择性超过了任何人造催化剂,例如脲酶只能将尿素迅速转化成氨和二氧化碳,而对其他反应没有任何活性。2.高效率
酶比人造催化剂的效率高出109至1015
倍。例如一个过氧化氢分解酶分子,在1秒钟内可以分解十万个过氧化氢分子。3.反应条件温和一般在常温、常压下进行。4.反应历程复杂受pH、温度、离子强度影响较大。2023/4/76.7.3酶催化反应一、反应历程
酶(E)与底物(S)先形成中间化合物ES,中间化合物再进一步分解为产物(P),并释放出酶(E),整个反应的速控步是第二步。二、速率方程2023/4/76.7.3酶催化反应(Michaelis常数)2023/4/76.7.3酶催化反应
令酶的原始浓度为[E]0,反应达稳态后,一部分变为中间化合物[ES],余下的浓度为[E]。所以:2023/4/76.7.3酶催化反应1.当底物浓度很大时,[S]>>KM,r=k2[E]0,反应只与酶的浓度有关,而与底物浓度无关,对[S]呈零级。此时r即是最大速率rm。2.当[S]<<KM时,r=k2[E]0[S]/KM
对[S]呈一级。三、动力学曲线2023/4/76.7.3酶催化反应四、KM和rm的求算重排得:以作图,从斜率和截距求出KM和rm令rm
=k2[E]02023/4/76.7.4气-固相催化反应一、反应特点反应物和产物为气相,催化剂为固相。气体反应物在固相催化剂表面上被催化反应生成产物。
二、反应的五过程
Ⅰ反应物向催化剂表面扩散Ⅱ反应物被催化剂表面吸附Ⅲ反应物在催化剂表面上反应生成产物Ⅳ产物从催化剂表面脱附Ⅴ产物扩散离开催化剂表面Ⅰ、Ⅴ为扩散过程,Ⅱ、Ⅲ、Ⅳ为表面过程。
2023/4/76.7.4气-固相催化反应三、气-固相催化反应动力学分析设第二步为控速步骤,则反应速率为:式中pA为A的分压,θA为A在催化剂表面达吸附—解吸平衡时的覆盖率,θ0为催化剂的表面空白率,θB为产物达吸附—解吸平衡时的覆盖率。2023/4/76.7.4气-固相催化反应(1)若产物B不被吸附或吸附很弱,则设在在等温下θA与压力的关系式符合Langmuir(兰缪尔)等温方程式吸附等温方程(见表面现象)所以bB为吸附系数,相当于吸附于解吸平衡常数2023/4/76.7.4气-固相催化反应讨论:1、若压力很低或A是弱吸附,,所以:
2、若压力很高或吸附强,,所以:2023/4/76.7.4气-固相催化反应3、若为一般的压力或吸附适中,原式积分:
(2)若B也被吸附,且是很强的吸附,则:2023/4/76.8光化学反应光化学基本定律光化学反应动力学*化学发光2023/4/76.8.1光化学基本定律光的波长与能量光化学基本定律量子效率(quantumefficiency)2023/4/76.8.1光化学基本定律UVVisIRFIR150400800/nm紫外可见光
红外
远红外一摩尔光量子能量称为一个“Einstein”:波长越短,能量越高。紫外、可见光能引发化学反应。由于吸收光量子而引起的化学反应称为光化学反应。一、光的波长与能量2023/4/76.8.1光化学基本定律1.光化学第一定律
只有被分子吸收的光才能引发光化学反应。该定律在1818年由Grotthus和Draper提出,故又称为Grotthus-Draper定律。2.光化学第二定律
在初级过程中,一个被吸收的光子只活化一个分子。该定律在1908~1912年由Einstein和Stark提出,故又称为Einstein-Stark定律。二、光化学基本定律2023/4/76.8.1光化学基本定律3.Beer-Lambert定律
平行的单色光
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 开题报告:语言类大学生数字化自主学习能力培养路径研究
- 开题报告:学校集群发展中校长知识治理创新的中国经验研究
- 开题报告:新时代学校体育美育改革发展研究
- 中医院工作计划012年
- 五年级上册各单元单元计划
- 8中学团委学年工作计划
- 人教版六年级上册数学教学进度计划
- 义务教育发展工作计划
- 教师走出去引进来培训工作计划
- 2024年工业级空压机租赁协议样本
- 在线网课知慧《旅行企业运营与管理(青岛大学)》单元测试考核答案
- 交通安全法律法规培训内容
- 中职数学《平面的基本性质》课件
- 2023年考研数学一真题
- 国家开放大学电大《电子商务概论》形考任务1试题及答案
- 施工现场平面布置和临时设施临时道路布置
- T-CARM 002-2023 康复医院建设标准
- 骨筋膜室综合征的观察及护理培训课件
- 【教学创新大赛】以能力为导向的立体化课堂构建与实践-“古代汉语”课程教学创新成果报告
- 展览馆中控系统设计任务书
- pet造粒加工工艺
评论
0/150
提交评论