北师大版七年级下册数学第四章三角形-测试题及答案_第1页
北师大版七年级下册数学第四章三角形-测试题及答案_第2页
北师大版七年级下册数学第四章三角形-测试题及答案_第3页
北师大版七年级下册数学第四章三角形-测试题及答案_第4页
北师大版七年级下册数学第四章三角形-测试题及答案_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版七年级下册数学第四章三角形测试卷评卷人得分一、单选题1.图中三角形的个数是()A.8 B.9 C.10 D.112.下面四个图形中,线段BE是⊿ABC的高的图是()A.B.C. D.3.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm4.三角形的一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.钝角三角形 C.锐角三角形 D.不确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A.3个 B.4个 C.5个 D.6个6.下面说法正确的个数有()①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=12∠C,那么△ABC⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,则此三角形是直角三角形.A.3个B.4个C.5个D.6个7.在△ABC中,∠B、∠C的平分线相交于点P,设∠A=x°,用x的代数式表示∠BPC的度数,正确的是()A.90+x B.90+x C.90+2x D.90+x8.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A.90° B.180° C.160° D.120°9.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个 B.2个 C.3个 D.4个10.给出下列命题:①三条线段组成的图形叫三角形;②三角形相邻两边组成的角叫三角形的内角;③三角形的角平分线是射线;④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外;⑤任何一个三角形都有三条高、三条中线、三条角平分线;⑥三角形的三条角平分线交于一点,且这点在三角形内.正确的命题有()A.1个 B.2个 C.3个 D.4个评卷人得分二、填空题11.如图,一面小红旗其中∠A=60°,∠B=30°,则∠BCD=_________.12.如图,为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是__.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是_________度.14.如图,∠1=_____.15.若三角形三个内角度数的比为2:3:4,则相应的外角比是_____________.16.如图,△ABC中,∠A=40°,∠B=72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF=_________度.17.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a的取值范围是________________18.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________.19.如图,中,,、分别平分,,则________,若、分别平分,的外角平分线,则________.20.如图△ABC中,AD是BC上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.评卷人得分三、解答题小华从点A出发向前走10m,向右转36°然后继续向前走10m,再向右转36°,他以同样的方法继续走下去,他能回到点A吗?若能,当他走回到点A时共走多少米?若不能,写出理由.22.一个零件的形状如图,按规定∠A=90º,∠C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由.23.如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,(1)若∠ABC=30°,∠ACB=50°,求∠DAE的度数(2)写出∠DAE与∠C-∠B的数量关系,并证明你的结论24.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=50°,求∠ACD的度数.参考答案1.B【解析】试题解析:∵图中的三角形有:△AGD,△ADF,△AEF,△AEC,△ABC,△DGF,△DEF,△CEF,△CEB,∴共9个三角形.故选B.2.A【解析】分析:根据三角形的高的定义,过顶点向对边作垂线,顶点与垂足之间的线段为三角形的高,观察各选项直接选择答案即可.解答:解:根据三角形高线的定义,只有A选项符合.故选A.3.B【解析】【分析】根据三角形任意两边的和大于第三边,进行分析判断.【详解】解:A、1+2<4,不能组成三角形;B、4+6>8,能组成三角形;C、5+6<11,不能够组成三角形;D、2+3<5,不能组成三角形.故选:B.【点睛】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.4.B【解析】【分析】此题依据三角形的外角性质,即三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形的结论.【详解】因为三角形的一个外角与它相邻的内角和为180°,而题中说这个外角小于它相邻的内角,所以可知与它相邻的这个内角是一个大于90°的角即钝角,则这个三角形就是一个钝角三角形.故选:B.【点睛】本题主要考查三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.5.A【解析】【分析】由“直角三角形的两锐角互余”,结合题目条件,得∠C=∠BDF=∠BAD=∠ADE.【详解】解:∵AD是斜边BC上的高,DE⊥AC,DF⊥AB,

∴∠C+∠B=90°,∠BDF+∠B=90°,∠BAD+∠B=90°,

∴∠C=∠BDF=∠BAD,

∵∠DAC+∠C=90°,∠DAC+∠ADE=90°,

∴∠C=∠ADE,

∴图中与∠C(除之C外)相等的角的个数是3,

故选A.【点睛】本题的关键是利用已知条件得出等角的余角相等,利用平行线的性质得出角相等.6.C【解析】试题分析:①∵三角形三个内角的比是1:2:3,∴设三角形的三个内角分别为x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小题正确;②∵三角形的一个外角与它相邻的一个内角的和是180°,∴若三角形的一个外角等于与它相邻的一个内角,则此三角形是直角三角形,故本小题正确;③∵直角三角形的三条高的交点恰好是三角形的一个顶点,∴若三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形,故本小题正确;④∵∠A=∠B=12∴设∠A=∠B=x,则∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小题正确;⑤∵三角形的一个外角等于与它不相邻的两内角之和,三角形的一个内角等于另两个内角之差,∴三角形一个内角也等于另外两个内角的和,∴这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确;⑥∵三角形的一个外角等于与它不相邻的两内角之和,又一个内角也等于另外两个内角的和,由此可知这个三角形中有一个内角和它相邻的外角是相等的,且外角与它相邻的内角互补,∴有一个内角一定是90°,故这个三角形是直角三角形,故本小题正确.故选D.考点:1.三角形内角和定理;2.三角形的外角性质.7.A【解析】分析:根据三角形内角和定理可求得∠ABC+∠ACB的度数,再根据角平分线的定义可求得∠PBC+∠PCB的度数,最后根据三角形内角和定理即可求解.详解:如图:∵∠A=x°,∴∠ABC+∠ACB=180°−x°,∵∠B,∠C的平分线相交于点P,∴∠PBC+∠PCB=(180°−x°),∴∠BPC=180°−(180°−x°)=90°+x°,故选A.点睛:本题考查了三角形内角和定理.8.B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90+x,∠BOD=90-x,所以∠AOC+∠BOD=90+x+90-x=180.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.9.C【解析】解:能够构成三角形三边的组合有13cm、10cm、5cm和13cm、10cm、7cm和10cm、5cm、7cm共3种,故选C.10.C【解析】【分析】分析所给的命题是否正确,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】∵三条线段组成的封闭图形叫三角形,∴①不正确;∵三角形相邻两边组成的角叫三角形的内角,∴②正确;∵三角形的角平分线是线段,∴③不正确;∵三角形的高所在的直线交于一点,这一点可以是三角形的直角顶点,∴④不正确.∵任何一个三角形都有三条高、三条中线、三条角平分线,∴⑤正确;∵三角形的三条角平分线交于一点,这个点叫三角形的内心,∴⑥正确;综上,可得正确的命题有3个:②、⑤,⑥.故选C.【点睛】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和即可求解.【详解】∠BCD是三角形ABC的外角,所以故答案为【点睛】考查三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.12.三角形具有稳定性【解析】【分析】用木条固定矩形门框,即是分割为两个三角形,故可用三角形的稳定性解释.【详解】解:加上木条后矩形门框分割为两个三角形,而三角形具有稳定性.故答案为三角形具有稳定性.【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.13.135°【解析】【分析】看图得△DEB为等腰直角三角形的三角板,得∠EDB的度数,由∠ADB为平角,进而求出∠ADE的度数.【详解】∵∠EDB=45°,∠ADB=180°,∴∠ADE=135°.【点睛】本题考察三角板的类型判断和角度计算,解题的关键为正确判断三角板的类型和知道三角板各个角的度数.14.120°【解析】∵∠2=180°-140°=40°,∴∠1=80°+40°=80°+∠2=120°.15.7:6:5【解析】【分析】三角形三个内角度数的比为2:3:4,三个角的和是180度,因而设一个角是2x度,则另外两角分别是3x度,4x度,就可以列出方程,求出三个角的度数.根据外角与相邻的内角互补,求出三个外角的度数,从而求出相应的外角比.【详解】解:设一个角是2x度,则另外两角分别是3x度,4x度,根据题意,得:2x+3x+4x=180,解得x=20,因而三个角分别是:40度,60度,80度.则相应的外角的度数是:140度,120度,100度,则相应的外角比是7:6:5.故答案为7:6:5【点睛】已知几个数据的和与比值,求这几个数,可以设参数方程求解,这类题目的解法是需要熟记的内容.16.74°【解析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∴∠ACE=∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.17.a>5【解析】因为−2<2<5,所以a−2<a+2<a+5,所以由三角形三边关系可得a−2+a+2>a+5,解得a>5.18.72°、72°、36°【解析】【分析】此题先根据已知三角形的一个外角等于与它相邻的内角的4倍,互为邻补角的两个角和为180°,从而求出这个外角与它相邻的内角的度数为144°、36°.又知这个外角还等于与它不相邻的一个内角的2倍,所以可以得到这两个与它不相邻的内角分别为:72°、72°,则这个三角形各角的度数分别是36°,72°,72°.【详解】∵三角形的一个外角等于与它相邻的内角的4倍,∴可设这一内角为x,则它的外角为4x,∴有则又∵这个外角还等于与它不相邻的一个内角的2倍,∴这两个与它不相邻的内角分别为:72°、72°.∴这个三角形各角的度数分别是72°、72°、36°.故答案为72°、72°、36°.【点睛】考查三角形的外角性质以及三角形内角和定理,比较基础,难度不大.19.【解析】【分析】首先根据三角形内角和求出∠ABC+∠ACB的度数,再根据角平分线的性质得到∠IBC=∠ABC,∠ICB=∠ACB,求出∠IBC+∠ICB的度数,再次根据三角形内角和求出∠I的度数即可;根据∠ABC+∠ACB的度数,算出∠DBC+∠ECB的度数,然后再利用角平分线的性质得到∠1=∠DBC,∠2=ECB,可得到∠1+∠2的度数,最后再利用三角形内角和定理计算出∠M的度数.【详解】∵∠A=100°.∵∠ABC+∠ACB=180°﹣100°=80°.∵BI、CI分别平分∠ABC,∠ACB,∴∠IBC=∠ABC,∠ICB=∠ACB,∴∠IBC+∠ICB=∠ABC+∠ACB=(∠ABC+∠ACB)=×80°=40°,∴∠I=180°﹣(∠IBC+∠ICB)=180°﹣40°=140°;∵∠ABC+∠ACB=80°,∴∠DBC+∠ECB=180°﹣∠ABC+180°﹣∠ACB=360°﹣(∠ABC+∠ACB)=360°﹣80°=280°.∵BM、CM分别平分∠ABC,∠ACB的外角平分线,∴∠1=∠DBC,∠2=ECB,∴∠1+∠2=×280°=140°,∴∠M=180°﹣∠1﹣∠2=40°.故答案为:140°;40°.【点睛】本题主要考查了三角形内角和定理,以及角平分线的性质,关键是根据三角形内角和定理计算出∠ABC+∠ACB的度数.20.6【解析】【详解】三角形的中线将三角形分成面积相等的两部分,则△ABD的面积=12△ABC的面积=12,△ABE的面积=12△ABD考点:中线的性质21.可以走回到A点,共走100米【解析】试题分析:他要想回到原点需要走成正多边形,根据多边形的外角和定理求出多边形的边数,从而求出路程.试题解析:解:根据题意可知,360°÷36°=10,所以他需要转10次才会回到起点,它需要经过10×10=100m才能回到原地.所以小华能回到点A.当他走回到点A时,共走100m.22.零件不合格.理由见解析.【解析】【分析】根据三角形外角的性质求出∠BDC的度数,与测量所得的度数对比即可得出结论.【详解】如图,∠CDE是△ADC的外角,∠BDE是△ABD的外角,∵∠CDE=∠C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论