




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
———一元二次方程(优秀3篇)人生天地之间,若白驹过隙,忽然而已,我们的工作又进入新的阶段,为了在工作中有更好的成长,该好好计划一下接下来的工作了!相信大家又在为写计划犯愁了吧?的我精心为您带来了一元二次方程(优秀3篇),希望能够帮助到大家。
《一元二次方程》的优秀教案篇一
1、自我介绍:30s
大家下午好!我叫XXX,20XX年毕业于暨南大学,学的行政管理,现在教的是初中数学,希望能与大家有一个愉快的下午!
2、一元二次方程概念、系数、根的判别式:8min30s
我们今天的课堂内容是复习一元二次方程。首先请同学们看黑板上的这4个等式,请判断等式是否是一元二次方程,如果是请说出该一元二次方程的二次项系数、一次项系数以及常数项:
(1)x-10x+9=0是1-109
(2)x+2=0是102
(3)ax+bx+c=0不是a必须不等于0(追问为什么)
(4)3x-5x=3x不是整理式子得-5x=0所以为一元一次方程(追问为什么)好,同学们都回答得非常好!那么我们所说的一元二次方程究竟是什么呢?我们从它的名字可以得出它的定义!
一元:只含一个未知数
二次:含未知数项的最高次数为2
方程:一个等式
一元二次方程的一般形式为:ax+bx+c=0(a≠0)其中,a为二次项系数、b为一次项系数、c为常数项。记住,a一定不为0,b、c都有可能等于0,一元二次方程的形式多种多样,所以大家要注意找系数时先将一元二次方程化为一般式!至于一个一元二次方程有没有根怎么判断,有同学能告诉老师吗?(没有就自己讲),好非常好!我们知道Δ是等于2-4ac的,当Δ0时,方程有2个不相同的实数根;当Δ=0时,方程有两个相同的实数根;当Δ0时,方程无实根。那我们在求方程根之前先利用Δ判断一下根的情况,如果小于0,那么就直接判断无解,如果大于等于0,则需要进一步求方程根。
3、一元二次方程的解法:20min
那说到求方程的根我们究竟学了几种求一元二次方程根的方法呢?我知道同学们肯定心里有答案,就让老师为你们一一梳理~
(1)直接开方法
遇到形如x=n的二元一次方程,可以直接使用开方法来求解。若n0,方程无解;若n=0,则x=0,若n0,则x=±n。同学们能明白吗?
(2)配方法
大家觉得直接开平方好不好用?简不简单?那大家肯定都想用直接开方法来做题,是吧?当然,中考题简单也不至于这么简单~但是我们可以通过配方法来将方程往完全平方形式变化。配方法我们通过2道例题来巩固一下:
简单的一眼看出来的:x-2x+1=0(x-1)=0(让同学回答)
需要变换的:2x+4x-8=0
步骤:将二次项系数化为1,左右同除2得:x+2x-4=0
将常数项移到等号右边得:x+2x=4
左右同时加上一次项系数一半的平方得:x+2x+1=4+1
所以有方程为:(x+1)=5形似x=n
然后用直接开平方解得x+1=±5x=±5-1
大家能听懂吗?现在我们一起来做一道练习题,2min时间,大家一起报个答案给我!
题目:1/2x-5x-1=0答案:x=±+5
大家都会做吗?还需要讲解详细步骤吗?
(3)讲完了直接开方法、配方法之后我们来讲一个万能的公式法。只要知道abc,没有公式法求不出来的解,当然啦,除非是无解~
首先,公式法里面的公式大家还记得吗?
x=(-b±2-4ac)/2a
这个公式是怎么来的呢?有同学知道的吗?就是将一般式配方法得到的x的表达式,大家记住,会用就可以了,如果有兴趣可以课后试着用配方法进行推导,也欢迎课后找我探讨~这个公式法用起来非常简单,一找数、二代入、三化简。我们来做一道简单的例题:
3x-2x-4=0
其中a=3,b=-2,c=-4
带入公式得:x=((-(-2))±2)2-4x(-4)x3/(2x3)
化简得:x1=(1-)/3x2=(1+)/3
同学们你们解对了吗?
使用公式法时要注意的点:系数的符号要看准、代入和化简要细心,不要马失前蹄哈~
(4)今天的第四种解方程的方法叫因式分解法。因式分解大家会吗?好那今天由我来带大家一起见识一下因式分解的魅力!
简单来说,因式分解就是将多项式化为式子的乘积形式。
比如说ab+ab可以化成ab(1+a)的乘积形式。
那么对于二元一次方程,我们的目标是要将其化成(mx+a)x(nx+b)=0这样就可以解出x=-a/mx=-b/n
我们一起做一个例题巩固一下:4x+5x+1=0
则可以化成4x+x+4x+1=0x(4x+1)+(4x+1)=0(x+1)(4x+1)=0
所以有x=-1x=-1/4
同学们都能明白吗?就是找出公因式,将多项式化为因式的乘积形式从而求解。练习题:x-5x+6=0x=2x=3
x-9=0x=3x=-3
4、总结:1min
好,复习完了二元一次方程我们熟知它的概念。只含有一个未知数且未知数项最高次数为2的等式,叫做二元一次方程。我们还要会找abc系数,会用Δ=b-4ac来判别方程实根的情况。还需要熟悉四种方程的解法,这是中考的重点考察内容。当然,具体用哪一种解题方法就需要结合具体的题目来选择了。如果形式简单可以直接用开平方则直接用开平方,否则首选因式分解法,再者选择配方法,最后的底线是公式法~当然每个人的习惯不一样,熟悉的方法也不一样,同学们可以自行选择万无一失的方法,像老师不到万不得已绝对不用公式法,哈哈哈哈~好啦,上完这一个复习课希望大家都能有收获!
元二次方程篇二
教学目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学难点和难点:
重点:
1.一元二次方程的有关概念
2.会把一元二次方程化成一般形式
难点:一元二次方程的含义。
教学过程设计
一、引入新课
引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?
分析:1.要解决这个问题,就要求出铁片的长和宽。
2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。
3.让学生自己列出方程(x(x十5)=150)
深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?
二、新课
1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程一元一二次方程(板书课题)
2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。(板书一元二次方程的定义)
3.强化一元二次方程的概念
下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8
从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。
4.一元二次方程概念的延伸
提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?
引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式
ax2+bx+c=0(a≠0)
1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。
2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称。
3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。
强化概念(课本p6)
1.说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=o(2)x2—3x十4=0;(3)3x2-5=0
(4)4x2十3x—2=0;(5)3x2—5=0;(6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
课堂小节
(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;
(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。
课外作业:略
元二次方程篇三
教学目标:(1)理解的概念
(2)掌握的一般形式,会判断的二次项系数、一次项系数和常数项。
(2)会用因式分解法解
教学重点:的概念、的一般形式
教学难点:因式分解法解
教学过程:
(一)创设情景,引入新课
实际例子引入:列出的方程分别为X-7x+8=0,(X
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 行政组织理论的知识拓展策略试题及答案
- 计算机二级MySQL与数据安全试题及答案
- 2025年N1叉车司机理论考试题及答案
- 网络技术领域的标杆企业分析试题及答案
- 行政组织沟通与协调考题及答案
- 数据库结构设计的规范试题及答案
- 公司工会干部管理制度
- 学校军训安全管理制度
- 在建油库安全管理制度
- 土地报批部门管理制度
- 个人商业计划书范文5篇
- 2025年反恐与公共安全管理职业资格考试试卷及答案
- 2025年消防知识考试题库:火灾预防与逃生逃生技巧实战演练题
- 福建卷-2025届高考化学全真模拟卷
- 高速公路占道施工应急安全措施
- 2022隧道顺光照明技术指南
- 2025年广东省广州市增城区中考一模化学试题(含答案)
- 2025高考英语作文考前背诵(应用文+读后续写)
- 6.3种群基因组成的变化与物种的形成课件-2高一下学期生物人教版必修2
- 河北开放大学2025年《西方行政制度》形成性考核3答案
- 成人创伤性颅脑损伤院前与急诊诊治中国专家共识2025解读
评论
0/150
提交评论