版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学第四章-三角函考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(sx+@)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin("+@)的简图,理解A.s、e的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx\arc-cosx\arctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2a+cos2a=1,sina/cosa=tana,tana*cosa=1”.§04.三角函数知识要点SINCOS三角函数值大小关系图1、2、3、4表示第一、四象限一半所在区域.①与a(0°<a<360°)终边相同的角的集合(角a与角P的终边重合):②终边在%轴上的角的集合:1|P=kSINCOS三角函数值大小关系图1、2、3、4表示第一、四象限一半所在区域③终边在y轴上的角的集合:1|B=kx180。+90。,keZ}④终边在坐标轴上的角的集合:B邛=kx90。,keZ}⑤终边在尸%轴上的角的集合:X|B=kx180。+45。,keZ}⑥终边在y=—%轴上的角的集合:1|P=kx180o-45。,keZ}⑦若角a与角B的终边关于%轴对称,则角a与角B的关系:a=360。k-B⑧若角a与角B的终边关于y轴对称,则角a与角B的关系:a=360。k+180。-8⑨若角a与角B的终边在一条直线上,则角a与角B的关系:⑩角a与角B的终边互相垂直,则角a与角B的关系:a=360。k+B±90。.角度与弧度的互换关系:360°=2式180°=兀1°=0.017451=57.30。=57。18'注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零、弧度与角度互换公式:1rad=180°^57.30°=57°18'. 1°=工心0.01745(rad)冗 180
3、弧长公式:l1扇形面积公式:s扇形21r21|r24、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r则sin上;r,x;cot一,
ysecr;;xcsc5、三角函数在各象限的符号:r.y(一全二正弦,三切四余正弦、余割+o余弦、正割+x3、弧长公式:l1扇形面积公式:s扇形21r21|r24、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r则sin上;r,x;cot一,
ysecr;;xcsc5、三角函数在各象限的符号:r.y(一全二正弦,三切四余正弦、余割+o余弦、正割+x正切、余切tancos弦)6、三角函数线正弦线:MP;余弦线:正切线:AT.7.三角函数的定义域:16.几个重要结论(3)若o<x<9,则sinx<x<tanx
2三角函数定义域f(x)siixxxRf(x)cosxxxRf(x)taixx|xR曰xk-,kZ2f(x)cotxxxR且xk,kZf(x)secxx|xR且xk—,kZ2f(x)cscxxxR且xk,kZsin cos tanc°^cotcos sin8、同角三角函数的基本关系式:tancot1cscsinsin2 cos2 1sec21sectan2cos11csc2 cot2 19、诱导公式:把^ 的三角函数化为的三角函数,概括为:2“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组二公式组三
公式组二公式组一密网#羔古身=si赊=9x)=sln亚&2x=1cos(2k冗+x)=cosxCOSJx)=cosxtaS2k版cx=1=tanx=®^x)=n+taa2及=sec2xsinxcot(2k冗+x)=cotxcot(-x)=-cotx公式组四 公式组五公式组六tanx,cotx=1 1+cot2x=csc2公式组四 公式组五公式组六sin(冗+x)=-sinxsin(2冗-x)=-sinxsin(冗-x)=sinxcos(冗+x)=-cosxcos(2冗-x)=cosxcos(兀-x)=-cosxtan(冗+x)=tanxtan(2冗-x)=-tanxtan(兀-x)=-tanxcot(冗+x)=cotxcot(2冗-x)=-cotxcot(兀-x)=-cotx(二)角与角之间的互换公式组一 公式组二cos(a+B)=cosacosB-sinasinBsin2a=2sinacosacos(a-B)=cosacosB+sinasinBcos2a=cos2a-sin2a=2cos2a-1=1-2sin2asin(a+sin(a+B)=sinacosB+cosasinBtan2a=2tana1-tan2asin(asin(a-B)=sinacosB-cosasinBsina=±.,'2 1tan(a+Btan(a+B)=tana+tanB
1-tanatanBa
cos—=2±[1+cosatan(a-tan(a-B)=tana-tanB
1+tanatanBta±|1-cosa sina 1-cosa2 11+cosa1+cosasina公式组三a2tan. 2sina= a+tan2-2公式组四公式组三a2tan. 2sina= a+tan2-2公式组四I/ 、/sinacosB=鼻kin'a+B)+sin匕-cosasinB=2kinG+B)-sinG-B)]B)]公式组五cosacosB=losQ+B)+cosG-B)]a1—tan2—2cosa= a1+tan2一2ca2tan—, 2tana= a1—tan2一2sinasinB=—-fcosCx+B)-cosG-B)1a+Ba-Bsina+sinB=2sin cos 2
a+B
sina-sinp=2cos sin-2
a+B
cosa+cosB=2cos cos222
a-B2
a-Bcosa-cosB=-2sina+B.a-B
sin Z1cos(2-兀-a)=sinasin(-2-兀-a)=cosa,zl… …tan(-2-兀-a)=cotacos(-2兀+a)=-sina,zl… …tan(-2兀+a)=-cotasin(-2-兀+a)=cosaTOC\o"1-5"\h\z■- 厂:- L L力"6-•2F75。—rc<15。-'6+'2,tan15。=cot75。=2--3,tan75。=cot15。=2+、:3.sin15。=cos75。= sin750=cos15°= "4 410.正弦、余弦、正切、余切函数的图象的性质:y=sinxy=cosxy=tanxy=cotxy=Asin(tox+隼)(A、①>0)
定义域RR<%1%eR且%wk—+,—,keZ>{%1%eR且%wk—,keZ}R值域[-1,+1][-1,+1][ 2 JRRLAA]周期性2—2———2—①奇偶性奇函数偶函数奇函数奇函数当中w0,非奇非偶当中=0,奇函数单调性——…[-——+2k—,2—…—+2k—]上为增函数 ;—[―+2k—,3— r-2-+2k—]上为减函数(keZ)[6k-1%,2k—] '上为增函数[2k—,(2k+11]上为减函数(keZ)-—+k—,—+k—I2 2J上为增函数(keZ)(k—,(k+1%)上为减函数(keZ)…— ]2k—---9^(A),312k—+7—-92 (-A)L 3 」上为增函数;— —2k—+19 2—(A),3c, 32k—+T—-9 2 (-A)_ 3 」上为减函数(keZ)注意:①y=-sin%与y=sin%的单调性正好相反;y=-cos%与y=cos%的单调性也同样相反.一般地,若y=f(%)在[a,b]上递增(减),则y=-f(%)在[a,b]上递减(增).②y=sin%1与y=Icos%I的周期是冗.2几③y=sm(3%+隼)或y=cos(①%+9)(①w0)的周期T= .3|%tan—2的周期为2冗(T5nT=2冗%tan—2④y=sin(3%+隼)的对称轴方程是%=kn+—(keZ),对称中心(kn,0);y=cos(0%+中)的对称轴方程是2k—一、%=k—(keZ),对称中心(心…14n);y=tan(3%+6的对称中心(一,0).TOC\o"1-5"\h\zk—+—,0 n2 2y=cos2%―原点对称=-cos(-2%)=-cos2%— —⑤当tana-tanp=1,a+0=k—+—(keZ);tana-tanp=-1,a-0=k—+—(keZ).22⑥y=cos%与y=sin%+—+2k—1⑥y=cos%与y=sin%+—+y=©%+*=疝(3%+M+2九八±°0s(3%>⑦函数y=tan%在R上为增函数.(x)[只能在某个单调区间单调递增.若在整个定义域,y=tan%为增函数,同样也是错误的].
是定义域关于原点⑧定义域关于原点对称是f(x)具有奇偶性的必要不充分条件.(奇偶性的两个条件:对称(奇偶都要),二是满足奇偶性条件,偶函数:f(-x)=f(x),奇函数:f(-x)=-f(x))是定义域关于原点奇偶性的单调性:奇同偶反例如:y=tanx是奇函数,y=tan(x+3冗)是非奇非偶.(定义域不关于原点对称)y-lcos2x+1/21图象奇函数特有性质:若0ex的定义域,则f(x)一定有f(0)=0.y-lcos2x+1/21图象⑨y=sinlxl不是周期函数;y=|sinx|为周期函数(7=兀); Ty=coslxl是周期函数(如图);y=Icosx|为周期函数(7=兀);v-cos\x\图象v_ros2r+1的周期为冗(如图),并非所有周期函数都有最小正周期,例如:v-cos2x+2y=f(x)=5=f(x+k),keR.⑩y=acosa+bsinB=aa2+b2sin(a+隼)+cos隼=—有aa2+b2>|y|a11、三角函数图象的作法:1)、几何法:2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).3)、利用图象变换作三角函数图象.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y=Asin(sx+q)的振幅|A|,周期T=型,频率f=1=®,相位3x+p;初相干(即当x=013| T2冗时的相位).(当A>0,3>0时以上公式可去绝对值符号),由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|3|<1)或缩短(|3|>1)到原来叫"3倍,得到y=sin«x的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用sx替换x)由y=sinx的图象上所有的点向左(当q>0)或向右(当q<0)平行移动IqI个单位,得到y=sin(x+q)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+q替换X)由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动IbI个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)由y=sinx的图象利用图象变换作函数y=Asin(sx+q)(A>0,s>0)(x£R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延X轴量伸缩量的区别。4、反三角函数:函数y=函数y=sinx,兀兀一2,2八的反函数叫做反正弦函数,记作y=arcsinx,它的定义域是[—1,1],值域是「函数y=cosx,(x£[0,n])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[—1,1],值域是[0,n].
函数y=函数y=tanx,[1))的反函数叫做反正切函数,记作y=arctanx,它的定义域是(一8,十8),值域是函数y=ctgx,[x£(0,n)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(一8,十8)值域是(0,n).II.竞赛知识要点反三角函数.1.反三角函数:⑴反正弦函数y=arcsinx是奇函数,故arcsin(-x)=-arcsinx,X8)值域是(0,n).II.竞赛知识要点反三角函数.1.反三角函数:⑴反正弦函数y=arcsinx是奇函数,故arcsin(-x)=-arcsinx,Xel-1,1](一定要注明定义域,若xe(—8,+8),没有x与y一—对应,故y=sinx无反函数)注:sin(arcsinx)=x,xeL1,1],arcsinxe⑵反余弦函数y=arccosx非奇非偶,但有arccos(-x)+arccos(x)=兀+2k兀,xeL1,1].注:①cos(arccosx)=x,xeL1,1],arccosxeb,九].②y=cosx是偶函数,y=arccosx非奇非偶,而y=sinx和y=arcsinx为奇函数.兀兀,⑶反正切函数:y=arctanx,定义域(-8,+8),值域(—-,—),y=arctanx是奇函数,) 22arctan(-x)=-arctanx,xe(-8,+8).
注:tan(arctanx)=x,xe(-8,+8).兀兀⑷反余切函数:y=arccotx,定乂域(一8,+8),值域( ,—),y=arccotx是非奇非偶.2<21arccot(-x)+arccot(x)=兀+2k兀,xe(-8,+8).注:①cot(arccotx)=x,xe(-8,+8).②y=arcsinx与y=arcsin(1-x)互为奇函数,y=arctanx同理为奇而y=arccosx与y=arccotx非奇非偶但满足arccos(-x)+arccosx=8+2k8,xe[-1,1]arccotx+arccot(-x)=8+2k8,xe[-1,1]•⑵正弦、余弦、正切、余切函数的解集:a的取值范围 解集a的取值范围解集①sinx=a的解集②cosx=a的解集a>10U>1=1尸11x=2k兀+arcsina,kez}[I1 {dx=2k兀+arccosa,ke
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省宣城市2023-2024学年九年级上学期期末数学试题
- 2024年版:高端装备制造生产线融资租赁合同
- 2024-2030年中国双槽式清洗机项目可行性研究报告
- 2024全新年度企业师徒传承与品牌价值提升合同3篇
- 2024年特许经营合同的特许经营范围及权利义务
- 2024年玻璃幕墙制作安装合同
- 2024年标准化系统安装服务协议范本版B版
- 吕梁学院《会计学原理》2023-2024学年第一学期期末试卷
- 2024年度事业单位与境外专家劳动合同规范9篇
- 2024年桃树果苗采购合同样本3篇
- 三角形的高、中线与角平分线课件
- 在线教育平台行业五年发展洞察及发展预测分析报告
- 2023年部编版道德与法治五年级下册全册单元复习课教案
- 2024年江苏苏州市事业单位专业化青年人才定岗特选444人历年高频500题难、易错点模拟试题附带答案详解
- 学校食堂舆情处置预案
- 2024年大学生信息素养大赛(省赛)考试题库(含答案)
- 应用语言学智慧树知到答案2024年杭州师范大学
- Chinese Festivals (教学设计)-2024-2025学年外研版(一起)英语五年级上册
- 乙方和甲方对赌协议书范本
- 2024年人教版八年级数学(上册)期末试卷及答案(各版本)
- 安全先进个人事迹材料(7篇)
评论
0/150
提交评论