冲刺2020年数学中考专题练习题:《直角三角形斜边上的中线》_第1页
冲刺2020年数学中考专题练习题:《直角三角形斜边上的中线》_第2页
冲刺2020年数学中考专题练习题:《直角三角形斜边上的中线》_第3页
冲刺2020年数学中考专题练习题:《直角三角形斜边上的中线》_第4页
冲刺2020年数学中考专题练习题:《直角三角形斜边上的中线》_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冲刺2020年数学中考专题练习:《直角三角形斜边上的中线》一.选择题1.如图,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是()A.24 B.25 C.30 D.362.在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=6,则CP的长为()A.3 B.3.5 C.4 D.4.53.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AB,交AC于点E,ED=3,则AE的长为()A.1.5 B.2 C.3 D.3.54.如图,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的距离为整数的点有()个.A.5 B.6 C.7 D.85.到直角三角形的三个顶点距离相等的点()A.是该三角形三个内角平分线的交点 B.是斜边上的中点 C.在直角三角形的外部 D.在直角三角形的内部6.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于点G,CD=AE.若BD=8,CD=5,则△DCG的面积是()A. B. C. D.7.如图,已知A(3,6)、B(0,n)(0<n≤6),作AC⊥AB,交x轴于点C,M为BC的中点,若P(,0),则PM的最小值为()A.3 B. C. D.8.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,AD=3,CE=5,则CD等于()A.3 B.4 C. D.9.已知,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,延长AC到F,使得CF=AC,连接EF.若EF=4,则AB的长为()A.8 B. C.4 D.10.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为()A. B. C.3 D.4二.填空题11.如图,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,F为BC的中点,DE=5,BC=8,则△DEF的周长是.12.已知:如图,四边形ABCD中,∠ABC=∠ADC=90°,AC与BD相交于点O,E、F分别是AC、BD的中点.则∠EFO=.13.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,CE是AB边上的中线,若AD=3,CE=5,则CD等于.14.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=28°,E、F分别是BC、AC的中点,则∠EDF=.15.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若EF=13,则线段AB的长为.16.如图,DE是Rt△ABD的斜边AB上的中线,AB=12,在ED上找一点F,使得DF=2,连结AF并延长至C,使得AF=CF,连结CD,CB,则CB长为.三.解答题17.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,过点A作AE⊥CD于点F,交CB于点E,且∠EAB=∠DCB.(1)求∠B的度数:(2)求证:BC=3CE.18.在Rt△ABC中,∠ABC=90°,BD为∠ABC的角平分线,F为AC的中点,AE∥BC交BD的延长线于点E,其中∠FBC=2∠FBD.(1)求∠EDC的度数.(2)求证:BF=AE.19.如图,在△ABC中,AD是BC边上的高线,CE是AB边上的中线,DG⊥CE于G,CD=AE.(1)求证:CG=EG.(2)已知BC=13,CD=5,连结ED,求△EDC的面积.20.如图1,已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE.(2)连结DM,ME,猜想∠A与∠DME之间的关系,并证明猜想.(3)当∠A变为钝角时,如图2,上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.

参考答案一.选择题1.解:∵CE是斜边AB上的中线,∴AB=2CE=2×6=12,∴S△ABC=×CD×AB=×5×12=30,故选:C.2.解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠DBA=30°,∴BD=AD,∵AD=6,∴BD=6,∵P点是BD的中点,∴CP=BD=3.故选:A.3.解:∵AB=AC,AD⊥BC,∴BD=CD,∵DE∥AB,∴AE=CE,∴DE=AE=AB=3,故选:C.4.解:如图,取AB的中点D,连接CD.∵AC=BC=AB=6.∵点D是AB边中点,∴BD=AB=3,∴CD==3;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=AB=3,∴3﹣3≤OD+CD≤3+3.∴点C到点O的距离为整数的点有5个,故选:A.5.解:∵在直角三角形中,斜边上的中线等于斜边的一半,∴直角三角形斜边的中点到直角三角形的三个顶点距离相等的点,故选:B.6.解:连接DE,∵AD是BC边上的高线,CE是AB边上的中线,∴AE=ED=BE,∵CD=AE.∴ED=CD,∵DG⊥CE于点G,∴EG=GC,∵BD=8,CD=5,∴DE=5,∴AB=10,∴AD=6,过E作EF⊥BC于F,∵△ABC的面积=,∴△BEC的面积=,∵△BED的面积=,∴△EDC的面积=﹣12=,∴△DGC的面积=,故选:D.7.解:如图,作AH⊥y轴于H,CE⊥AH于E,作MN⊥OC于N.则四边形CEHO是矩形,OH=CE=6,∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA,∴=,∴=,∴AE=2BH,设BH=x,则AE=2x,∴OC=HE=3+2x,OB=6﹣x,∴B(0,6﹣x),C(3+2x,0)∵BM=CM,∴M(,),∵P(,0),∴PN=ON﹣OP=﹣=x,∴PM2=PN2+MN2=x2+()2=x2﹣3x+9=(x﹣)2+,∴x=时,PM2有最小值,最小值为,∴PM的最小值为=.故选:D.8.解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=3,∴DE=2,∵CD为AB边上的高,∴在Rt△CDE中,CD==,故选:C.9.解:连接CD,∵点D,E分别是AB,BC的中点,∴DE∥AC,DE=AC.∵延长AC到F,使得CF=AC,∴DE∥CF且DE=CF,∴四边形CDEF是平行四边形.∴CD=EF=4.∵∠ACB=90°,CD为斜边AB中线,∴AB=2CD=8.故选:A.10.解:∵四边形ABCD是正方形,∴∠DCE=90°,OD=OB,∵DF=FE,∴CF=FE=FD,∵EC+EF+CF=18,EC=5,∴EF+FC=13,∴DC==12,∴BC=CD=12,∴BE=BC﹣EC=7,∵OD=OB,DF=FE,∴OF=BE=,故选:A.二.填空题(共6小题)11.解:∵CD⊥AB,F为BC的中点,∴DF=BC=×8=4,∵BE⊥AC,F为BC的中点,∴EF=BC=×8=4,∴△DEF的周长=DE+EF+DF=5+4+4=13.故答案为:13.12.解:连接EB、ED,∵∠ABC=90°,E是AC的中点,∴BE=AC,同理,DE=AC,∴EB=ED,又F是BD的中点,∴EF⊥BD,∴∠EFO=90°,故答案为:90°.13.解:∵在Rt△ABC中,∠ACB=90°,CE为AB边上的中线,CE=5,∴AE=CE=5,∵AD=3,∴DE=2,∵CD为AB边上的高,∴在Rt△CDE中,CD=,故答案为:14.解:∵∠ADC=90°,F是AC的中点,∴DF=AC=AF,∴∠FDA=∠CAD=28°,∴∠DFC=∠FDA+∠CAD=56°,∵E、F分别是BC、AC的中点,∴EF=AB,EF∥AB,∴∠EFC=∠CAB=28°,∴∠EFD=56°+28°=84°,∵AB=AC,∴FE=FD,∴∠EDF=∠DEF=×(180°﹣84°)=48°,故答案为:48°.15.解:∵点D,E分别是边AB,AC的中点,∴DE=BC,DE∥BC,∵CF=BC,∴DE=CF,又DE∥CF,∴四边形DEFC为平行四边形,∴CD=EF=13,∵∠ACB=90°,点D是边AB的中点,∴AB=2CD=26,故答案为:26.16.解:∵DE是Rt△ABD的斜边AB上的中线,∴DE=AB=6,∴EF=DE﹣DF=4,∵AF=CF,AE=EB,∴BC=2EF=8,故答案为:8.三.解答题(共4小题)17.解:(1)∵AE⊥CD,∴∠AFC=∠ACB=90°,∴∠CAF+∠ACF=∠ACF+∠ECF=90°,∴∠ECF=∠CAF,∵∠EAD=∠DCB,∴∠CAD=2∠DCB,∵CD是斜边AB上的中线,∴CD=BD,∴∠B=∠DCB,∴∠CAB=2∠B,∵∠B+∠CAB=90°,∴∠B=30°;(2)∵∠B=∠BAE=∠CAE=30°,∴AE=BE,CE=AE,∴BC=3CE.18.解:(1)∵∠ABC=90°,BD为∠ABC的角平分线,∴∠ABD=∠DBC=45°,∵∠FBC=2∠FBD.∴∠FBD=15°,∠FBC=30°,∵∠ABC=90°,点F是AC中点,∴AF=BF=CF,∴∠C=∠FBC=30°,∴∠EDC=∠C+∠DBC=75°;(2)∵∠C=30°,∠ABC=90°,∴AC=2AB,∴AB=AF=BF,∵AE∥BC,∴∠E=∠DBC=45°=∠ABD,∴AB=AE,∴AE=BF.19.(1)证明:连接DE,在Rt△ADB中,点E是AB的中点,∴DE=AB=AE,∵CD=AE,∴DE=DC,又DG⊥CE,∴CG=EG.(2)解:作EF⊥BC于F,∵BC=13,CD=5,∴BD=13﹣5=8,∵DE=BE,EF⊥BC,∴DF=BF=4,∴EF===3,∴△EDC的面积=×CD×EF=×5×3=7.5.20.(1)证明:如图,连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME,又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论