




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市中考数学模拟试卷(含答案)一、单选题1.计算:()A.1 B.0 C.2020 D.﹣20202.如图,该几何体的俯视图是()A. B. C. D.3.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80° B.70° C.85° D.75°4.若正比例函数为y=3x,则此正比例函数过(m,6),则m的值为()A.﹣2 B.2 C. D.5.下列计算中,结果是a7的是()A.a3﹣a4 B.a3•a4 C.a3+a4 D.a3÷a46.若线段分别是边上的高线和中线,则()A. B.C. D.7.一次函数与图象之间的距离等于3,则的值为()A.2 B.3 C.4 D.68.如图,矩形的对角线与相交于点,,则等于()A.5 B.4 C.3.5 D.39.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A.30° B.45° C.60° D.90°10.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点()A. B. C. D.二、填空题11.分解因式:______.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.13.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.14.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是_______.三、解答题15.计算:.16.计算:.17.已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)18.在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?19.如图,已知等腰三角形ABC中,AB=AC,点D,E分别在边AB、AC上,且AD=AE,连接BE、CD,交于点F.(1)求证:∠ABE=∠ACD;(2)求证:过点A、F的直线垂直平分线段BC.20.如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)21.在一段长为1000的笔直道路AB上,甲、乙两名运动员均从A点出发进行往返跑训练.已知乙比甲先出发30秒钟,甲距A点的距离y(米)与其出发的时间x(分钟)的函数图象如图所示,乙的速度是150米分钟,且当乙到达B点后立即按原速返回.(1)当x为何值时,两人第一次相遇?(2)当两人第二次相遇时,求甲的总路程.22.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?23.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.24.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.25.问题提出(1)如图①.在△ABC中,AB=4,∠A=135°,点B关于AC所在直线的对称点为B',则BB'的长度为.问题探究(2)如图②,半圆O的直径AB=10,C是的中点,点D在上,且,P是AB上的动点,试求PC+PD的最小值.问题解决(3)如图③,扇形花坛AOB的半径为20m,∠AOB=45°.根据工程需要.现想在上选点P,在边OA上选点E,在边OB上选点F,用装饰灯带在花坛内的地面上围成一个△PEF,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带PE+EF+FP的长度最短,并且用长度最短的灯带围成的△PEF为等腰三角形.试求PE+EF+FP的值最小时的等腰△PEF的面积.(安装损耗忽略不计)答案1.A2.A【解析】分析:找到从几何体的上面所看到的图形即可.详解:从几何体的上面看可得,故选A.3.A【解析】∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选A.4.B5.B6.D【详解】解:如图,是的高,是的中线,当为等腰三角形,且时,等号成立.故错误,正确,故选:.7.C【详解】如图,设直线与x轴交点为点C,与y轴交点为点A,过点A作直线于点D由一次函数图象的性质可知,直线与直线平行则AD为两直线间的距离,且与两直线均垂直对于直线令得,则点令得,解得,则点又,即解得对于直线令得则解得故选:C.8.B【解析】试题解析:∵四边形ABCD是矩形,∴AC=BD=2AB=8,故选B.9.B【详解】连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=∠BOC=45°.故选B.10.B【解析】∵某定弦抛物线的对称轴为直线x=1,∴该定弦抛物线过点(0,0)、(2,0),∴该抛物线解析式为y=x(x-2)=x2-2x=(x-1)2-1.将此抛物线向左平移2个单位,再向下平移3个单位,得到新抛物线的解析式为y=(x-1+2)2-1-3=(x+1)2-4.当x=-3时,y=(x+1)2-4=0,∴得到的新抛物线过点(-3,0).故选B.11.(m+3)(m-3)12.813.13.4解:设点A的坐标为,过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,点,点B的坐标为,,解得,,故答案为4.14..解:如图,过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得则EC+ED的最小值是15..16..【详解】.17.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:18.【详解】(1)由题意可得,被调查的总人数为12÷20%=60,希望参加活动B的人数为60×15%=9,希望参加活动D的人数为60-27-9-12=12,故补全条形统计图如下:(2)由条形统计图知众数为“A-国学诵读”;(3)由题意得全校学生希望参加活动A的人数为800×=360(人)19.【详解】(1)在△ABE和△ACD中,,∴△ABE≌△ACD,∴∠ABE=∠ACD;(2)连接AF.∵AB=AC,∴∠ABC=∠ACB,由(1)可知∠ABE=∠ACD,∴∠FBC=∠FCB,∴FB=FC,∵AB=AC,∴点A、F均在线段BC的垂直平分线上,即直线AF垂直平分线段BC.20.52【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:该铁塔的高AE为52米.21.【详解】(1)甲的速度为:100÷4=250米/分钟,令250x=150(x),解得,x=0.75,答:当x为0.75分钟时,两人第一次相遇;(2)当x=5时,乙行驶的路程为:150×(5)=825<1000,∴甲乙第二次相遇的时间为:(分钟),则当两人第二次相遇时,甲行驶的总路程为:1000+(5.5-5)×200=1100(米),答:当两人第二次相遇时,甲行驶的总路程是1100米.22.【解析】(1)掷一次骰子,有4种等可能结果,只有掷到4时,才会回到A圈.P1=(2)列表如下,12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2.4)(3,4)(4,4)所有等可能的结果共有16种,当两次掷得的数字和为4的倍数,即(1,3),(2,2),(3,1),(4,4)时,才可落回A圈,共4种,∴.∴可能性一样.23.【详解】证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.24.【详解】解:(1)由x2﹣4=0得,x1=﹣2,x2=2,∵点A位于点B的左侧,∴A(﹣2,0),∵直线y=x+m经过点A,∴﹣2+m=0,解得,m=2,∴点D的坐标为(0,2),∴AD==2;(2)设新抛物线对应的函数表达式为:y=x2+bx+2,y=x2+bx+2=(x+)2+2﹣,则点C′的坐标为(﹣,2﹣),∵CC′平行于直线AD,且经过C(0,﹣4),∴直线CC′的解析式为:y=x﹣4,∴2﹣=﹣﹣4,解得,b1=﹣4,b2=6,∴新抛物线对应的函数表达式为:y=x2﹣4x+2或y=x2+6x+2.25.【详解】(1)如图①中,∴B,B'关于直线AC对称,∴∠CAB=∠CAB'=135°,AB=AB'=4,∴∠BAB'=360°﹣135°﹣135°=90°,∴BB'=.故答案为:;(2)如图中,作点C关于AB的对称点C',连接DC'交AB于P,连接PC,此时PC+PD的值最小,根据圆的对称性质,知:点C'在⊙O上,且CC'为⊙O的直径,∴∠CDC'=90°.∵AB是直径,,∴OC⊥AB,∴∠COB=90°.∵,∴∠COD=60°.∵OC=OD,∴△OCD是等边三角形.∴OC=OD=CD=5,∠C'CD=60°,∴在Rt△CDC'中,DC'=CD,∴PC+PD的最小值为;(3)如图③中,连接OP,作点P关于OA的对称点M,点P关于OB的对称点N,连接MN交OA于E,交OB于F,连接PE,PF,OM,ON,此时△PEF的周长最小,∵∠AOP=∠AOM,∠BOP=∠BON,∠AOB=45°,∴∠MON=90°,∴OM=ON=OP=20m,∴MN=20(m).∵OP=OM=ON,∴∠OMP=∠OPM,∠O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年计算机二级Web考试新手指导试题及答案
- 跨区域私人直升机维修保养与飞行数据分析协议
- 股权表决权委托与智能制造产业投资合同
- 2025年中国北京特色小镇行业市场规模调研及投资前景研究分析报告
- 智能零售电子价签系统数据安全保障与服务协议
- 2025年中国办公室方块地毯行业市场规模及投资前景预测分析报告
- 抖音短视频账号运营权转让与品牌合作协议
- 抖音火花部门直播互动率KPI考核标准合同
- 网络交易担保补充协议
- 高端国际商标注册与全球业务拓展代理合同
- 【跨国并购风险问题分析文献综述2700字】
- 偏瘫科普宣教
- 酒驾延缓处罚申请书
- 2023年国家开放大学《财务报表分析》形成性考核(1-4)试题答案解析
- 2022年1月福建化学会考试卷
- 2023年贵州省遵义市中考地理试卷真题(含答案)
- 物料提升机基础专项施工方案正文
- 工程机械管理制度
- 广东省劳动合同电子版(六篇)
- 对话大国工匠-致敬劳动模范期末考试答案
- 中央空调多联机安装规范
评论
0/150
提交评论